Best Practice Guide - AMD EPYC

Xu Guo, EPCC, UK

Ole Widar Saastad (Editor), University of Oslo, Norway
Version 2.0 by 18-02-2019

PRACE

Best Practice Guide - AMD EPYC

Table of Contents

O [gL oo [0 1o o R PSP PP 3
2. System Architecture / CONfIQUIATIONccoeuuniiiiii et e e e e 4
2.1, ProCessor AFCHITECIUIEiiiiie ettt e s 4

2.2. MEMOTY ATCRITECIUIE ... et ettt ettt et e et e e e ene s 6
2.2.1. Memory Bandwidth Benchmarkingccouuiiiiiiiiiiiiii e 7

3. Programming Environment / BasiC POMINGccceuuuiiiiiieeiiii ettt e e e e eene e eeees 9
3.1 Available COMPITENS ...ttt 9

3. L1 COMPIEr FIAS oottt e et e e e e e e e e 9

3.1.2. Compiler PErfOrMENCEcoeeiiieiiii e et e e e ena e e 11

3.2. Available (Optimized) Numerical Librariescouiviiiiiiiiiiii e 13
3.2.1. Performance Of [IDrariesc..uuiiiiiii e 13

3.2.2. Examples of numerical library USAgecoouuiiiiiiiiiii e 15

3.3. Available MPl IMpPIEmMENtaiioNSuiiiiiie et 17

B OPENMP et 18
AL COMPIEE FIAOS oevtieeieii et 18

3.5. BasiC POrting EXAMPIESoouiiiiiii ettt e e e 18
5.1 OPENSBLI .t 18

35,2, CASTEP ..ot 19

3.5.3. GROMALS ..ottt et 19

4. PerformanCe ANBIYSIS ... oot 20
4.1. Available Performance ANAlYSIS TOOISccuuuuiiiiiiieieii ettt 20
A.1.1. perf (LINUX ULHTEY) ooveeeeei ettt e e 20

A.1.2. AMD PPIOF <t 21

4.1.3. PerfOrMENCE MEPOMSceeeeiieeeiii ettt ettt ettt e et e et e e e e eeb e e e eee e eeeneas 21

4.2. General Hints for Interpreting Results from all t00lSooviiiiiiiiii e, 22

T 011 o P PP PP PPPPPN 24
5.1. Advanced / Aggressive ComMpPIler FIBOScuuuuiiiiiiieii et e 24
5.1.1. GNU COMPITEN ..ttt ettt et e e e e e e b s 24

5.1.2. INtEl COMPITEN .ottt eeaas 24

5.1.3. PGI (Portland) COMPITEYcoouuiiiiiii e 24

5.1.4, ComMPIlErs aNd FlAgSoeeeeriieeiii et e 24

5.2. SINGle COre OPLIMIZALIONc.uuueieiiieeeeii ettt e ettt e e e e e e e e be s 25
5.2.1. Replace lim [IDrary ... 25

5.3. AAvanced OPENMP USAJEceiiiiiiiii ettt et e e et e e e s 26
5.3.1. Tuning / Environment VariableScooouiiiiiiiii e 26

5.3.2. Thread AFFINITY ...eeeeiei e 27

5.4. MemMOry OPtIMIZALIONcoeiutieeiiii ettt e ettt e e et e e e et e e e erb e e eentnaaaees 27
5.4.1. Memory Affinity (OpenMP/MPI/HYDITd)oovvviiii e 27

5.4.2. Memory Allocation (MalloC) TUNINGoceeiueiiiiii e 29

5.4.3. USING HUJE PAJES ... ettt e s 31

5.4.4, MONItOrNG NUMA PBOESueiiiiiieieiti ettt e et e et e e eete e eenes 31

5.5. Possible Kernel Parameter TUNINGioieieiieiiiie ettt e e 32
5.5. 1 NUMA CONEIOL ...ttt ettt et e e e e e e e e enans 32

5.5.2. SCheduling CONEIOLuiiiii et 33

B. DEIDUGGING .. ettt 35
6.1. AVailale DEDUGUENS ...ceveieiiiii ettt ettt ettt eee 35

B.2. COMPIIES FIBOS ...ttt ettt ettt et e e e 35
FUItNEr dOCUMENTAEIONceeteeeiit ettt ettt ettt e ettt e e et et e et e et r e e e enbareeeenbnaeaeee 36

Best Practice Guide - AMD EPYC

1. Introduction

Figure 1. The AMD EPYC Processor chip

The EPY C processors are the latest generation of processors from AMD Inc. While they not yet show large adap-
tation on the top-500 list their performance might change thisin the future.

The processors are based on x86-64 architecture and provide vector units for a range of different data types, the
most relevant being 64-bits floating point. V ector units are 256 bits wide and can operate on four double precision
(64-bits) numbers at atime. The processors feature a high number of memory controllers, 8 in the EPY C 7601
model (see [6] for details) that was used for evaluation in the writing of this guide. They also provide 128 PCle
version 3.0 lanes.

This guide provides information about how to use the AMD EPY C processors in an HPC environment and it
describes some experienceswith the use of some common toolsfor this processor, in addition to ageneral overview
of the architecture and memory system. Being a NUMA type architecture information about the nature of the
NUMA isrelevant. In addition some tuning and optimization techniques as well as debugging are covered also.

In this mini guide we cover the following tools: Compilers, performance libraries, threading libraries (OpenMP),
Message passing libraries (MPI), memory access and allocation libraries, debuggers, performance profilers, etc.

Some benchmarks, in which we compare compilersand libraries have been performed and some recommendations
and hints about how to use the Intel tools with this processor are presented. While the AMD EPYC is a x86-64
architecture it's not fully compatible with Intel processors when it comes to the new features found on the latest
generations of the Intel processors. Issues might be present when using highly optimized versions of the Intel
libraries.

In contrast to the Intel tools the GNU tool s and tools from other independent vendors have full support for EPY C.
A set of compilers and development tools have been tested with satisfactory resuilts.

Best Practice Guide - AMD EPYC

2. System Architecture / Configuration

2.1. Processor Architecture

The x86 EPY C processor, designed by AMD, is a System-on-Chip (SoC) composed of up to 32 Zen cores per
SoC. Simultaneous Multithreading (SMT) is supported on the Zen core, which allows each core to run two threads
giving at maximum 64 threads per CPU in total. Each EPY C processor provides 8 memory channels and 128
PCle 3.0 lanes. EPY C supports both 1-socket and 2-sockets models. In the multi-processor configuration, half
of the PCle lanes from each processor are used for the communications between the two CPUs through AMD’s

socket-to-socket interconnect, Infinity Fabric [3][4][5][7].

There are several resources available for information about the Zen architecture and the EPY C processor. The
wikichip web site generally is a good source of information [6]. The figures and much of the information below
is taken from the web pages at wikichip and their article about Zen. Detailed information about cache sizes,
pipelining, TLB etc is found there. The table below just lists the cache sizes as they might be of use for many

programmers.

Table 1. Cache sizes and related infor mation

Cache level/type

Size & Information

LO LOP

2,048 pOPs, 8-way set associative,32-sets, 8-uOP line size

L1 instruction

64 KiB 4-way set associative,256-sets, 64 B
line size, shared by the two threads, per core

L1 data 32 KiB 8-way set associative, 64-sets, 64 B line size, write-
back policy, 4-5 cycles latency for Int, 7-8 cycles latency for FP
L2 512 KiB 8-way set associative, 1,024-sets, 64 B line size,
write-back policy, Inclusive of L1, 17 cycles latency
L3 Victim cache, 8 MiB/CCX, shared across al cores, 16-way

set associative, 8,192-sets, 64 B line size, 40 cycles latency

TLB instructions

8entry LOTLB, al page sizes, 64 entry L1 TLB,
al page sizes, 512 entry L2 TLB, no 1G pages

TLB data

64 entry L1 TLB, all page sizes, 1,532-entry L2 TLB, no 1G pages

Best Practice Guide - AMD EPYC

Figure 2. Zen Block diagram

Physical ITLB
Front End Request Queuels entry Lo (all sizes)| L1 Instruction Cache
weoTags ERLLIE 64KEB 4-Way
(L1$ & HOPS) 4
L1/L2 BTB 32Qcle
Return Stack (32 entry)
Indirect Target Array (ITA)
(512 entry: direct map) Instruction Byte Buffer
p—
2 Hash Tegs 2 Instructions |
perceptron I
OP Cache 4-Way ode o
(2K entry) (including fused jOPs) b
:
4-8 MOPs Al
[HOP Queue (72 entry) |
MicroCode ROM Stack Engine [st
(MSROM) Memfile o
‘ Dispatch [Branch Fusion ”
Bawide retire
6 1OPs 4,10Ps
Retire Queue
(192 entries)
Integer Rename / Allocate Rename / Allocate %
~
Non-Scheduling Queue (NSQ) !
| Schedulerfi Scheduler|i Scheduler|li SchedulerfMem Sche
14 entr\es’]‘l]‘t entnesjll‘t entnes)‘LJA entr\es’]l]‘t entries <) 8b Scheduling Queue (SQ) 2
2ds (96 entries) O
-l Physical Register File (168 entries) [Mave Elmination] H)
6 pOPs Physical Register File (160 entries) ;é i
Forwarding Muxes ApOPS @ 0 &
N 0 g 0
Forwarding Muxes g
=0
2
T TR
126-bit
Fran Faa
)
~
g
3l [Store Buffer
a (44 entries)
g M
A ‘Sfl 32B/cycle store emory
Execution 5
Engine DTLB
9 T L1 Data Cache
oad Buffer 64 entry L1 Ny
(72 entries) LskeniyL2nodc)| 32KIB 8-Way 32B/cycle

The Zen core contains abattery of different units, it isnot asimpletask to figure out how two threads are scheduled
on this array of execution units. The core is divided into two parts, one front end (in-order) and one execute part
(out-of-order). The front end decodes the x86-64 instructions to micro operations which are sent to the execution
part by ascheduler. Thereisone unit for integer and one for floating point arithmetic, there are hence two separate
pipelines one for integer and one for floating point operations.

The floating point part deals with all vector operations. The vector units are of specia interest as they perform
vectorized floating point operations. There are four 128 bits vector units, two units for multiplications including
fused multiply-add and two units for additions. Combined they can perform 256 bits wide AV X2 instructions.
The chip is optimized for 128 bits operations. The simple integer vector operations (e.g. shift, add) can all be
done in one cycle, half the latency of AMD's previous architecture. Basic floating point math has a latency of
three cycles including multiplication (one additional cycle for double precision). Fused multiply-add (FMA) has
alatency of five cycles.

AMD claim that theoretical floating point performance can be cal culated as: Double Precision theoretical Floating
Point performance = #real _cores*8DP flop/clk * core frequency. For a2 socket system = 2* 32cores* 8DP flops/
clk * 2.2GHz = 1126.4 Gflops. This includes counting FMA as two flops.

Best Practice Guide - AMD EPYC

Figure 3. EPYC Block diagram

PCle PCle
111t 111t
ST T

e e
= =
B =5
g Die 2 Die 3 %
= =

i1ttt tttt

1221 122])

PCle PCle

The EPY C processor contain 32 Zen cores laid out as the figure above shows. Thisis a cluster on a chip type
processor with its own None Uniform Memory Architecture (NUMA). The pronounced NUMA features has im-
plications for the programmer. All programs that want to run efficiently need to be NUMA aware.

2.2. Memory Architecture

Each EPY C processor provides up to 2TiB of DDR4 memory capacity across 8 memory channels with up to 2
DIMMs per channel [8].

The EPY C system is NUMA architecture with a series of individual memory banks. To see the layout use the
command numactl.

numact!| -H

The output list the NUMA banks and a map of relative distances, e.g. latency for memory access, see [14] for
more information.

avai |l abl e: 8 nodes (0-7)

node O cpus: 012 3456 7 64 65 66 67 68 69 70 71
node 0 size: 32668 MB

node 0 free: 29797 MB

plus 7 more, and the map showing the distances:

node di st ances:

node 0 1 2 3 4 5 6 7
10 16 16 16 32 32 32 32
16 10 16 16 32 32 32 32
16 16 10 16 32 32 32 32
16 16 16 10 32 32 32 32
32 32 32 32 10 16 16 16
32 32 32 32 16 10 16 16
32 32 32 32 16 16 10 16
32 32 32 32 16 16 16 10

NoghkwNhNEO

Care must be taken to schedule the ranks or threads so that they use the nearest memory as much as possible.
When scheduling a number of MPI ranks which essential could run exclusively on each NUMA bank the task
isrelatively easy. However, when scheduling threads (OpenM P uses POSI X threads) the task is not that easy. A
single thread can traverse the whole allocated memory as al threads share the same memory space. For a more
detailed description of this, see the chapter about tuning, Section 5.4.1.

Best Practice Guide - AMD EPYC

2.2.1. Memory Bandwidth Benchmarking

The STREAM benchmark [38], developed by John D. McCalpin of TACC, is widely used to demonstrate the
system's memory bandwidth via measuring four long vector operations as below:

Copy: a(i) = b(i)

Scale: a(i) =q * b(i)

Sum a(i) = b(i) + c(i)
Triad: a(i) = b(i) + q * c(i)

The following benchmarking on EPY C was based on a single node composed of 128 cores using AMD EPYC
7601 32-core processors in a dual-socket configuration. This processor has a CPU clock frequency of 2.20GHz.
This duel-socket EPY C has DDR4 memory (8 memory channels) with the memory speed of 2666MHz and a
theoretical memory bandwidth of 341GiB/s[8]. The same benchmarking on Skylake was based on a single node
composed of 112 cores using Intel Xeon Platinum 8180 28-core processors in a dual-socket configuration. The
Skylake processor has a CPU clock frequency of 2.50GHz. This intel processor has DDR4 memory (6 memory
channels) with the memory speed of 2666MHz and a theoretical memory bandwidth of 256GB/s [9]. The GNU
v7.2.0 compiler and Intel-64 v18.0.1 compiler were used to compile the STREAM benchmark v5.1.0 in C on both
systems. A number of compiler options have been tested and the results with the compiler options that delivered
the best performance were compared here.

According to the rules of running STREAM benchmark, the array size for the tests was increased significantly
by using “-DSTREAM_ARRAY _SIZE=800000000" [10] to ensure that it is much larger than the L3 cache size
on both systems. Different settings of “-DNTIMES” were also tested but the changing values did not affect the
final results significantly.

Table 2. Compiling options used for STREAM benchmarking on EPYC and Skylake

System and Compiler Compiler Options
EPYC 7601 GNU v7.2.0 -Ofast -DSTREAM_ARRAY _SIZE=800000000 -
DNTIMES=200 -fopenmp -mcmodel=medium
EPYC 7601 Intel-64 v18.0.1 -O3 -DSTREAM_ARRAY _S|ZE=800000000 -
DNTIMES=200 -gopenmp -mcmodel medium -shared-intel

Skylake 8180 GNU v7.2.0 -Ofast -DSTREAM_ARRAY _SIZE=800000000 -DNTIMES=200 -fopen-
mp -march=skylake-avx512 -mtune=skylake-avx512 -mcmodel=medium

Skylake 8180 Intel-64 v18.0.1 -O3 -DSTREAM_ARRAY _SIZE=800000000 -DNTIMES=200 -qopen-

mp -march=skylake -mtune=skylake -mcmodel medium -shared-intel

Best Practice Guide - AMD EPYC

Figure4. STREAM Benchmarking on AMD EPYC 7601 and Intel Skylake 8180

STREAM Benchmarking on AMD EPYC 7601 and Intel Skylake 8180

300,000.00

250,000.00 . oo0 oo 237,256.40 235,527.50 239,473.50 238,580.30

200,000.00

170,101. 168,342.80 170,377. 168,382.50

150,000.00 145,052.40

135,986.60
730.50

Bandwidth (MB/s)

100,000.00

50,000.00

Copy Scale Add Triad

HEPYC 7601 GNU v7.2.0 WEPYC 7601 Intel-64 v18.0.1 - Skylake 8180 GNU v7.2.0 & Skylake 8180 Intel-64 v18.0.1

Thefigure above shows the STREAM benchmarking results comparison on EPY C and Skylake (higher is better).
The best performance was achieved when using the Intel-64 compiler on both systems. The results showed that
EPY C has very promising high memory bandwidth and could achieve around 1.4~1.7x results when using the
Intel-64 compiler, compared with the numbers achieved on Skylake. It can be seen that EPY C could be a good
choice for the applications with expensive large scale sparse matrix calculations and/or large vector operations.

Best Practice Guide - AMD EPYC

3. Programming Environment / Basic Porting

3.1. Available Compilers

All compilers that run under x86-64 will normally run on the EPY C processor. However, not all compilers can
generate optimal code for this processor. Some might just produce a smallest possible common subset of instruc-
tions, using x86 instructions and not even attempt to use the vector units. This varies from compiler to compiler
and is both vendor and version dependent. There are obvious candidates, the Intel compiler cannot be expected to
support the EPY C processor for natural reasons. On the other hand GNU compilers might do agood job optimizing
and generating code for the EPY C. Other compilers like Open64 might also do a decent job.

Compilersinstalled and tested:

* AOCC/LLVM compiler suite, cc, fortran(version 1.0 and 1.2.1)

* GNU compiler suite, gcc, gfortran, g++(version 7.2.0 and 8.1.0)

* Intel compiler suite (Commercial) , icc, ifortran, icpc (version 2018.1)

* Portland Group (PGI) compiler suite (Commercial), pgcc, pgfortran, pgCC (version 17.10)

AMD support the development of acompiler set using LLVM [11]. Using the C and C++ israther straightforward,
it installs with asimple script. Using the AOCC and related Fortran plugin is not as easy, it requires some manual
steps and configuration and some extra packages. Presently AOCC require a specific version of gcc (4.8.2). This
comes bundled with the package.

AOCC/LLVM Intel, PGI (Portland), LLVM and GNU have been tested.
3.1.1. Compiler Flags

3.1.1.1. Intel

ThelIntel compiler isdeveloped and targeted for the Intel hardware and hence it has some minor issueswhen using
it with AMD hardware.

Table 3. Suggested compiler flagsfor Intel compilers

Compiler Suggested flags

Intel C compiler -O3 -march=core-avx2 -fma -ftz -fomit-frame-pointer

Intel C++ compiler -O3 -march=core-avx2 -fma-ftz -fomit-frame-pointer

Intel Fortran compiler -O3 -march=core-avx2 -align array64byte -fma -ftz -fomit-frame-pointer

The flag "march=core-avx2" is used to force the compiler to build AV X2 code using the AV X2 instructions
availablein EPY C. The generated assembly code doesindeed contain AVX (AVX and AV X2) instructions which
can be verified by searching for instructions that use the "ymm" registers. The documentation states about the "-
march” flag "generate code exclusively for a given <cpu>" It might not be totally safe to use this on none Intel
processors.

AMD claims that the EPY C processor fully supports AV X2, so it should be safe. Using the "-xCORE-AV X2"
can also be tried, but it might fail in some cases. In addition this might change from version to version of the
Intel compiler. The only sure way is testing it by trial and error. To illustrate this point, in some cases like the
HPCG (an alternative top500 test) benchmark, the option "-march=broadwell" worked well, e.g. produced the
best performing code.

If on the other side the peak performance is not paramount the safe option would be to use the "-axHost" flag
which also generates a least common denominator code which will run on any x86-64 processor. The run time
system performs checks at program launch to decide which code should be executed.

Best Practice Guide - AMD EPYC

When operating an amixed GNU g++ and Intel C++ environment the flags controlling C++ standard areimportant.
The flag "-std=gnu++98" is needed to build the HPCG benchmark and in other cases newer standards like "gnu
++14" are needed.

3.1.1.2. PGI

Table 4. Suggested compiler flagsfor PGl compilers

Compiler Suggested flags

PGI C compiler -O3 -tp zen -Mvect=simd -Mcache_align -Mprefetch -Munroll
PGI C++ compiler -O3 -tp zen -Mvect=simd -Mcache_align -Mprefetch -Munroll
PGI Fortran compiler -O3 -tp zen -Mvect=simd -Mcache_align -Mprefetch -Munroll

PGI C++ uses gcc version to set the different C++ versions. The installed versions support C++14 and older.
Online documentation is available [39].

Analysis of the generated code shows that using the SIMD option as suggested does generate 256 bits wide vector
instructions and that the call for Zen architecture also triggers generation of 256 bits wide FMA and other vector
instructions.

3.1.1.3. GNU

Table5. Suggested compiler flagsfor GNU compilers

Compiler Suggested flags

gcc compiler -O3 -march=znverl -mtune=znverl -mfma-mavx2 -m3dnow -fomit-frame-pointer
g++ compiler -0O3 -march=znverl -mtune=znverl -mfma-mavx2 -m3dnow -fomit-frame-pointer
gfortran compiler -O3 -march=znverl -mtune=znverl -mfma-mavx2 -m3dnow -fomit-frame-pointer
3.1.1.4. AOCC

Table 6. Suggested compiler flagsfor AOCC compilers

Compiler Suggested flags
clang compiler -O3 -march=znverl -mfma-fvectorize -mfma-mavx2 -
m3dnow -floop-unswitch-aggressive -fuse-ld=IId
clang++ compiler -0O3 -march=znverl -mfma -fvectorize -mfma-mavx2 -m3dnow -fuse-ld=lld
Fortran dragonegg/clang -03 -mavx -fplugin-arg-dragonegg-llvm-codegen-op-
compiler timize=3 -fplugin-arg-dragonegg-llvm-ir-optimize=3

The clang compiler is under development with assistance from AMD. The fortran front end is based on gcc 4.8.2
and hence does not have flags for the Zen architecture, alternatives do exist and the documents referenced below
provide more information. The options may change, more information about the usage of the clang compiler
is available online [40]. For the Dragonegg Fortran compiler online documentation is also available [41]. This
compiler suite is under heavy development and subject to change. It's require some manual extrawork to install.
But at the time of writing thisguideit was not a streamlined product (version 1.0 of AOCC). Pleasevisit the AMD
developer site to obtain the latest information and rel eases.

The Zen architecture in the EPY C processor does no longer support FMA4. However, sources claim it still is
available and works, See [12]. However, it might suddenly just vanish, so any usage of the flag -mfma4 should
be avoided.

10

Best Practice Guide - AMD EPYC

3.1.2. Compiler Performance

3.1.2.1. NPB OpenMP version

The well-known set of benchmarks found in the NPB [49] suite is used for several examplesin this guide. The
performance numbers are in flops numbers, hence higher is better. The different compilers show varying perfor-
mance with the different NPB benchmarks. The figure below shows the performance recorded using the OpenM P
version of the NPB benchmarks. The OpenMP version is chosen over MPI as the OpenMP thread library is an
integral part of the compiler and should be evaluated together with the code generation. The different testsin the
NPB benchmark suite check both the Fortran and C implementations. Review the benchmark's documentations
for details. From the figure below it's evident that all the tested compilers do afairly good job.

Figure5. Compiler performance comparison

NPB performance
OpenMP version using 64 theads

EEm AOCC

105 N gnu

N intel
pgi

104 4

Performance [Mflops/s]

103

102 -

bt cg ep ft is lu mg sp ua
NPB test

The log scale is used because the different benchmark metrics cover a rather large range. Log scale is used to
cover al the benchmarks is one figure. It show that there is some variance in the compiler performance. Hence
it's worth the effort to test afew compilers with your application.

3.1.2.2. High Performance Conjugate Gradients benchmark, OpenMP version

The High Performance Conjugate Gradients (HPCG) benchmark [47] is gaining more and more interest because
the Linpack (HPL) benchmark used to assess the 500 fastest systems in the world has some shortcomings [48].
HPCG generaly yieldsavery low processor efficiency dueto thefact that thisbenchmark is highly memory bound.

The OpenMP version of the benchmark is used on a single system with shared memory because the compiler's
and system's ability to run multiple threads over a shared large memory is of interest. Some extra compiler flags
that deal with prefetch have been added in addition to the suggested flags in the table above. Being avery memory
intensive code prefetch can improve performance by overlapping memory transfers with computation. However,
the hardware also does prefetching and issuing software prefetch instructions can be counterproductive in some
Cases.

We build the HPCG code with the reference implementation of the linear algebra because we want to test compiler
performance and not tuned library performance.

The table below shows the flags used to build the executables.

11

Best Practice Guide - AMD EPYC

Table 7. Flags used to compile HPCG

Compiler Flags used
AOCC, clang++ -Ofast -ffast-math -ftree-vectorize -fopenmp -march=znverl
-mtune=znverl -mfma-mavx2 -m3dnow -fuse-ld=Ild
GNU, g++ -0O3 -ffast-math -ftree-vectorize -fopenmp -march=znverl -mtune=znverl
-mfma-mavx2 -m3dnow -fprefetch-loop-arrays -mprefetchwtl
PGI, pgct++ -mp -O4 -tp zen -Mvect=simd -Mcache_align -Mprefetch -Munrall
Intel, icpc -std=gnu++98 -gopenmp -O3 -march=haswell -fma -ftz -fomit-frame-pointer

For the Intel compiler there were some issues using flags of the type core-avx2 etc. Hence a more moderate flag
opting for the Haswell architecture was used. Not all flags calling for AV X2 capable Intel processors worked well
on the EPY C processor. This was more prominent with C/C++ than with the Fortran compiler. Again some trial
and error is expected.

The best results from different processor bindings were reported, processor binding generally gave best results,
(OMP_PROC _BIND=1 or numactl -I etc.), see Section 5.4.1 for more on the effect of processor binding.

Figure 6. Compiler performance comparison using HPCG

HPCG performance.

OpenMP version using reference implementations run with 64 theads.

2.5
HEm AOCC
NN gnu
N intel
pgi
2.0 A
W
2
o 1.5
<)
Q
o
c
©
IS
S 1.0
€
[0
o
0.5 A
0.0 -

1 6 51 154
HPCG testing size [GiB]

The HPCG benchmark iscompiled using the reference version of thelinear algebralibrary [16] and other functions
that normally are called from an optimized library. This is by choice as the test should illustrate the different
compiler's ability to generate efficient code. It's clear that al the C++ compilerstested generate code that performs
this task reasonably well.

It's interesting to notice that performance drops as soon as the benchmark footprint spans more than one NUMA
memory node. The total memory of 256 GiB is made up of 8 NUMA nodes of 32 GiB each. This performance
drop is aconsequence of the different latenciesin non-local memory accessesin aNone Uniform Memory Access
(NUMA) system. It might well be that this problem should have been tackled using a hybrid model with one MPI
rank per NUMA node and 8 threads per MPI rank keeping the fine granular memory accesses within the local
NUMA node.

As adways with HPCG the absolute performance as compared to the theoretical peak performance is very low.
Thisis part of the reason that this benchmark now shows growing interest and is used as an alternative benchmark
as top500 HPCG aong with the top500 HPL benchmark.

12

Best Practice Guide - AMD EPYC

3.2. Available (Optimized) Numerical Libraries

The infrastructure and ecosystem of software around the AMD processors are seriously lagging behind that of
some other large chip makers. A key to exploit the modern microprocessors is the availability of good compilers
and well tuned numerical libraries. So far only a rather limited and not yet mature set has been presented. This
presents some obstacles when it comes to ease of use for scientists. This section will list and provide an overview
of tuned numerical libraries. While alater chapter will cover tuning and including usage of some selected libraries.

AMD has provided some libraries, see table below.

Table8. Numerical librariesby AMD

Library name Functions

BLIS Basic Linear Algebra Subprograms (BLAS)
libFLAME LAPACK routines

Random Number Generator Pseudorandom number generator library
Library

AMD Secure Random Num- library that provides APIsto access the cryp-
ber Generator tographically secure random numbers
libM Math library (libm.so, sqrt, exp, sin €tc)

For more detailed information about the AMD libraries please consult the AMD web pages about libraries [43].

There are several other numerical libraries optimized for x86-64 architectures.

Table 9. Other Numerical libraries

Library name Functions

OpenBLAS Basic Linear Algebra Subprograms (BLAS) [17]
GNU Scientific library (GSL) A rather large range of numerical routines[18]
FFTW Fast Fourier Transformsin 1,2,3-dimensions [20]

One old classic is OpenBLAS (formerly known as the Goto library). Thisis built and optimized for the current
architecture. While not really optimized for AMD EPY C the GSL and FFTW are optimized at compiling time as
they try to guess the vector capabilities of the processor. Thisis especialy true for FFTW.

3.2.1. Performance of libraries
A simple test to check the simple math functions is the savage benchmark [46].
for (k=1;k<=m k++) a=tan(atan(exp(log(sqrt(a*a)))))+1.0;

Where m is afairly large number, say 50 million (turn off optimization or the loop will be made redundant, use
-00).

Table 10. Math library performance

Library Wall time [seconds]
Standard libm 55.78
AMD libM 3173

It's obvious that something is not optimal with the implementation of libm supplied with the distribution. Yet
another example that the functions in standard math libraries supplied with the distribution are not optimal. The
distribution need to run on all types of x86-64 processors and the routines have been written to avoid instructions
that were not in the original x86-64 instruction set many years ago.

13

Best Practice Guide - AMD EPYC

Intel has provided a vector library for math functions that offers the possibility to use the vector units to handle
4 (64 bit float) or 8 (32 hit float) calls to a function simultaneously (using 256 bit AV X2 instructions). Thisis
called short vector math library. Thisis more or less just a vector version of the common math functions library.
The performance can be quite good. For the rea peak performance the intrinsic math functions should be used,
but this requires somewhat more programming effort.

Beginning with glibc 2.22' avectorized version of the libm library is available. The syntax is very similar, just
use -Imvec instead of -Im, but in addition the flags -ftree-vectorize -funsafe-math-optimizations and -ffast-math
are needed.

A very simple check if the compiler managed to vectorize or not isto leave out the -Imvec and look for the missing
symbols, if the missing symbol is (like this example) _pow() then it's not vectorized, but if you see something like
_ZGVdN4w___pow_finite then the call is part of the vector library libmvec.

An example of evaluating the possible gain for different library implementations of the function pow() is shown
below:

Table 11. Math library performance

Library Wall time [seconds]
gcc and libm 245
gcc and libmvec 8.69
gcc and AMD libM 151
Intel icc and svml 14.8
Intel intrinsic svml 11.0
gcc and Intel imf and mkl 9.14

The best results were obtained by using vectorized functions, both the novel vectorized math library in glibc or
the Intel vectorized libraries. See example section below (Section 3.2.2) for the compile and link line.

Figure 7. Numerical libraries performance, linear algebra

Numerical libraries performance

dgemm with different BLAS libraries

450%
400% B MKL
350% W OpenBLAS
g 0 LibBLIS
€ 300%
£ 250%
g 200%
2 150%
S 100%
e
50%
0%
1 2 4 8 16 28 32 48 56 64 96 112 128

cores

The matrix matrix multiplication were run using a matrix size yielding afootprint of 9 GiB. The executable was
compiled with the intel compiler using the following line :

ICheck using ldd --version

14

Best Practice Guide - AMD EPYC

ifort -o dgemmx -2 -qgopennp dgemmtest.f90 mysecond.c -|BLASLIB

Where BLASLIB isasuitable linear algebralibrary.

Figure 8. Numerical libraries performance, FFT

Numarical libraries performance

2-dimensional FFT

140%
B MKL ™ fftw
120%
S 100%
8
E 8%
S
2 60%
g
2 40%
o)
T 20%
0%
1 2 4 8 16 32 48 64 96 128

cores

The FFT tests were run using a size of approximately 63 GiB and the executable built using the GNU compiler
with alinelike:

gfortran -3 -fopennmp -march=znver1l -mtune=znverl -nfm - mavx2\
-fomt-frame-pointer -o fftw 2d.x nysecond.o fftw2d.f90 -IFFT

Where FFT isasuitable FFT library (MKL or FFTW).

Thefiguresabove are examples of performance variation using different numerical libraries. Thelntel Math Kernel
Library (MKL) does not do a very good job with the AMD processors for the dgemm linear algebra example,
which is dependent on vectors and fused multiply add. It will not select the AV X2 and FMA instruction enabled
routines. Instead a common x86-64 based function is used. This approach will alwayswork on all processors and
in al situations, but the performance is consequently inferior. The OpenBLAS (formerly known as Goto) and the
AMD recommended LibBLIS does a decent job. With the Fast Fourier Transform library the picture is different
as this algorithm utilises a different set of execution units in the processor. No definite answer and guidelines
can be given.

3.2.2. Examples of numerical library usage

3.2.2.1. Intel MKL and FFTW
Example of compiling and linking linear algebra and fftw.

gfortran -o dgemm x -fopennmp -3 dgemmtest. f 90\
/opt/anmd-blis/blis/lib/zen/libblis.a nysecond.o

gfortran -o dgemm x -fopennp -3 dgemmtest.f90 nysecond. o\
-l nkl _avx2 -1 nkl _core -Inkl_gnu_thread -1 nkl_gf_| p64

ifort -qopennp -3 -nmarch=core-avx2 -align array64byte -fna\
-1 /usr/local/include -o fftww 2d.f90 fftw 2d.f90\
fusr/local/lib/libfftwd onp.a /usr/local/lib/libfftw3.a

15

Best Practice Guide - AMD EPYC

and compiling and linking using MKL and the FFTW MKL interface.

ifort -qopennp -O3 -narch=core-avx2 -align array64byte -fmal\
-I/opt/intel/conpilers_and_libraries_2018.0.128/1inux/nkl/include/fftw
-o fftw 2d. x fftw2d.f90 -nkl=parallel\

/opt/intel/conpilers_and_ libraries_2018.0.128/1inux/nkl/1ib/intel 64/\
[ibfftwdxf_intel il p64.a

gfortran -O3 -fopennp -nmarch=znverl -ntune=znverl -nfma - mavx2\

-mBdnow -fomt-frame-pointer\
-l/opt/intel/conpilers_and_libraries_2018.0.128/1inux/nkl/include/fftw
-o fftw2d.x fftw 2d.f90\
-L/opt/intel/conpilers_and_libraries_2018.0.128/1inux/nkl/lib/intel 64/\

-1 fftwdxf_gnu_il p64 -1nkl _gf _ilp64 -1nkl_core -Inkl _gnu_thread nysecond. o

There arelot of different ways of combining the Intel MKL. The nm tool 2 can be of great help to locate functions
within the different library files. Thisisan example:

nm-A /opt/intel/nkl/lib/intel64_lin/lib*| grep DitiErrorClass | grep " T"

Intel aso has atool, the Intel MKL link-line advisor, to ease the process of finding the right link line [15].
3.2.2.2. Short vector math library, libsvml

3.2.2.2.1. Manual usage of intrinsic functions

The short vector math library functions take advantage of the vector unit of the processor and provide an easy
access to well optimized routines that map nicely on the vector units.

Usage of intrinsics like thisis mostly used in libraries and special time critical parts of programs. It is however,
an easier alternative to inline assembly.

The svml is linked by default when using the Intel compilers and the functions are not easily available directly
from source code. They are, however accessible through intrinsics. Intel provides a nice overview of theintrinsic
functions available [13]. Usage of intrinsics can yield quite good performance gain. In addition intrinsics are
compatible with newer versions of processors as the compilers and libraries are updated while the names stay the
same. Usage of inline assembly might not be forward compatible. Intel strongly suggest using intrinsics instead
of inline assembly.

A simple example of intrinsics usage is show below (compare to the simple for loop in the section below):

for(j=0; j<N j+=4){

__nk56d vecA = _mm56 | oad_pd(&a[j]);
__nk56d vecB = _mm56 | oad_pd(&b[j]);
__nk56d vecC = _nmmR256_pow pd(vecA, vecB);

_mR56_store pd(&c[j],vecO;
}

3.2.2.2.2. Automatic usage of Short Math Vector Library

At high optimization the compiler will recognize the simple expression above and vectorize it and performance
gain will belesser. The usage of theseintrinsicsis at its best when the compiler totally fails to vectorize the code.
No definite answer can be given, it depends on the performance problem under investigation.

If you want to play with this: there is ablog by Kyle Hegeman that will be helpful [42].

The command lines used to link the examples using short vector math are for the simple case where icc set up
callsto thesvml library :

2GNU Development Tools, see man nm for more information.

16

Best Practice Guide - AMD EPYC

icc -o vector.x vector.c nmysecond.c
while the more complicated line using gcc to make calls to the intel compiler'slibraries:

gcc -0 vector.x -Q2 vector.c mysecond. o\
-L/opt/intel/conpilers_and libraries/linux/lib/intel64/ -linf -lintlc

This is the simplest link line using gcc, the intel libraries have many dependencies between libraries. Finding
the exact intel library link command line is not trivial. but by using the nm tool to search for symbols it should
normally be straightforward. Another option isthe Intel MKL link advisor [15], this however, cover mostly MLK.

The gcc compiler has an option to use external libraries like svml, (and acml) the option -mveclibabi=svml will
enable gcc to generate callsto svml. For asimple loop like:

for(j=0; j<N, j++) c[j]=pow(alj],b[j]);

the gain can be quite good, alook at the assembly code will show that a call to the function vmldPow2, which is
afunction found in libsvml. The following example show performance improvement, compiling using:

gcc -o vector.x -O3 vector.c mysecond.c -ftree-vectorize
-funsafe-mat h-opti m zati ons -mavx2 -1m

or with svml
gcc -o vector.x -O8 vector.c mysecond.c
-mvecl i babi =svm -ftree-vectorize -funsafe-math-optim zations -ffast-math

-mavx2 -L/opt/intel/conpilers _and libraries/linux/lib/intel64 -1svm

Thisisavery elegant and simple way of accessing the svml library.

Table 12. Perfor mance using gcc with svml

Performancelibrary Wall time (sec)
Lib math, libm (/usr/lib64/libm.so) 93.03
Lib math, libmvec (/usr/lib64/libmvec.so) 25.25
Lib short Vector math, libsvml 14.39

Se next section about libmvec. Please consult the gcc documentation for more information. The gcc man page
lists which function calls that can be emitted by gcc. For more information about libsvml please consult the Intel
documentation.

3.2.2.3. Gnu vector math library

The libraries provided by gcc contain avector library similar to the svml. It's part of the SIMD parallel execution
in OpenMP. While vector operations are part of OpenMP viathe SIMD directive, this library works fine without
any OpenMP directives in the source code.

Using the example from the former section the link line looks like this:

gcc -o vector.x -2 -fopennp -ffast-math -ftree-vectorize -mavx2\
vector.c nmysecond.o -Im

For performance see table Table 12.

3.3. Available MPI Implementations

There are several possible MPI implementations available. The most commonly used are Intel MPI and OpenMPI.
While MPICH and HP-MPI & so enjoy popularity. The EPY C isastandard x86-64 architecture sothereisnot really

17

Best Practice Guide - AMD EPYC

any differencein installing and building software. Hence all softwareis expected to work without any adaptation.
The table below give an overview of the more common MPI implementations.

Table 13. Popular MPI implementations

MPI Notes

OpenMPI Open source, uses hwloc library to schedule and bind ranksto
cores, very flexible, Uses a Byte Transfer Layer (btl) for com-
munication devices. Full MPI-3.1 standards conformance

MPICH Open source, widely used, an old timer. MVAPICH is
aderived implementation. Support the MPI 3 standard.
Intel MPI Commercial, anintegral part of Intel Paralel Studio, inte-
grates with many Intel tools. Support the MPI 3.1 standard.
HP-MPI Commercial, embedded in a some applications. Support the MPI 2.2 standard.

The syntax is dlightly different for these implementations, but they all contains wrappers to compile (like mpicc)
and variants of mpirun to run. A description of the use of MPI is well covered elsewhere and therefore is not
included here. In the tuning chapter in this guide there are examples on how to place the different ranks and bind
them to specific partslike hwthread, core, L 2/L.3 cache, NUMA node, Socket and node. Onasystemwith8 NUMA
nodes like EPY C thisis quite important.

3.4. OpenMP

The OpenMP standard for specifying threading in programming languages like C and Fortran is implemented in
the compiler itself and as such isan integral part of the compiler in question. The OMP and POSI X thread library
underneath can vary, but thisis normally hidden from the user. OpenM P makes use of POSIX threads so both an
OpenMP library and a POSIX thread library is needed. The POSIX thread library is normally supplied with the
distribution (typically /usr/lib64/libpthread.so).

Thefact that EPY CisaNUMA system makes thread placement important. How the OS schedules and distributes
the threads on the cores and attached memory can influence the performance.

3.4.1. Compiler Flags

Compiler flags vary from compiler to compiler, the table below gives the flags needed to turn on OpenMP and
to read and parse the source code comments directives.

Table 14. Compiler flagsto invoke OpenM P support

Compiler Flag to select OpenM P OpenMP version supported
Intel compilers -gopenmp From17.00on:45
GNU compilers -fopenmp From GCC6.10n: 4.5
PGI compilers -mp 45

3.5. Basic Porting Examples

A few applications have been ported to AMD EY PC 7301 for test. Thetest platform was a 16-node system com-
posed of 16-core AMD EY PC 7301 processors with dual-socket configuration. The CPU rate is 2.20GHz. Please
note the tests were only for basic porting test rather than performance tuning.

3.5.1. OpenSBLI

OpenSBLI, developed by University of Southampton, is a Python-based modeling framework that is capable of
expanding a set of differential equations written in Einstein notation, and automatically generating C code that
performs the finite difference approximation to obtain a solution. [21]

18

Best Practice Guide - AMD EPYC

OpenSBLI was ported to the AMD EY PC 7301 using GNU 7.2.0 and Intel17 compilers. Further info on the build
instructions, example job scripts and example run results can be found from the following links:

» OpenSBLI build instructions with GNU 7.2.0: [22]
* OpenSBLI build instructions with Intel17: [23]
e OpenSBLI example job script: [24][25]

» OpenSBLI example run results: [26][27]

3.5.2. CASTEP

CASTEP, developed by the Castep Developers Group (CDG), is a full-featured materials modelling code based
on afirst-principles quantum mechanical description of electronsand nuclei. It usesthe robust methods of aplane-
wave basis set and pseudopotentials. [28]

CASTEP was ported to the AMD EY PC 7301 using GNU 7.2.0 . Further info on the build instructions, example
job scripts and example run results can be found from the following links:

» CASTEP build instructions with GNU 7.2.0: [29]
e CASTEP examplejob script: [30]

» CASTEP example run results: [31]

3.5.3. GROMACS

GROMACS, developed by the GROMACS team [32], is a versatile package to perform molecular dynamics, i.e.
simulate the Newtonian equations of motion for systems with hundreds to millions of particles. [33]

GROMACSwas ported to the AMD EY PC 7301 using GNU 7.2.0. Further info on the build instructions, example
job scripts and example run results can be found from the following links:

* GROMACS build instructions with GNU 7.2.0: [34]
« GROMACS example job script: [35]

* GROMACS example run results: [36]

19

Best Practice Guide - AMD EPYC

4. Performance Analysis

4.1. Available Performance Analysis Tools

There are several tools that can be used to do performance analysis. In this mini guide only a small sample is
presented.

4.1.1. perf (Linux utility)

The package perf isaprofiler tool for Linux. Perf isbased on the perf_eventsinterface exported by recent versions

of the Linux kernel. More information is available in the form of a manual [44] and tutorial [45].

To usethe tool isvery simple, this simple exampleillustrate it:

perf stat -d -d

-d -B

.Ibin. amd. pgi/ft.D

X

It produces the normal application output and emits performance statistics at the end. The above run produced

an output like this:

Per f ormance counter stats for

"./bin.and.pgi/ft.D. x":

31369526.971785 task-clock (nsec) # 63.084 CPUs utilized
2644784 context-sw tches # 0. 084 K/ sec
8203 cpu-mgrations # 0. 000 K/sec
291478964 page-faults # 0.009 M sec
82784624497276 cycl es # 2.639 GHz
80193260794737 stall ed-cycl es-frontend # 96.87% frontend cycles idle
19120224047161 stall ed-cycl es-backend # 23.10% backend cycles idle
68258717123778 instructions # 0.82 insn per cycle
1.17 stalled cycles per in
19286086849926 branches # 614.803 M sec
6240215654 branch-m sses # 0. 03% of all branches
35354448022854 L1-dcache-| oads # 1127.032 M sec
42217478927 L1l-dcache-| oad-m sses # 0.12% of all L1-dcache hits
0O LLC-Ioads # 0. 000 K/sec
0O LLC-Ioad-m sses # 0.00% of all LL-cache hits
1859844311886 L1-icache-I oads # 59. 288 M sec
13450731189 L1-icache-I| oad-m sses
35350211138280 dTLB-1 oads # 1126.897 M sec
13477704352 dTLB-1 oad- nm sses # 0.04% of all dTLB cache hits
1859455510321 i TLB-1 oads # 59. 276 M sec
4451162 i TLB-I| oad-m sses # 0.00% of all i TLB cache hits
16714849 L1-dcache-prefetches # 0.533 K/sec
51264834 L1-dcache-prefetch-m sses # 0.002 M sec

497. 269857091

seconds tinme el apsed

For real time analysisthe "top" option of the tool can be quite handy. A snapshot of the real time update produced
by the command "perf top" is shown :

Sanpl es: 33M of event 'cycles', Event count (approx.): 1305563178604
Overhead Shared Object Synbol
56.22% |ibpgnp. so [.] _np_barrier_tw
10.22% ft.D. x [.] fftz2_
6.99% |ibpgc.so [.] __c_nctopyl6
5.64% ft.D. x [.] evolve_

Best Practice Guide - AMD EPYC

3.59% ft.D. x [.] cfftsl_

2.94% [kernel] [k] down_read_tryl ock
2.29% [kernel] [k] snp_call_function_many
2.20% [kernel] [k] up_read

1.48% [kernel] [k] Ilist_add_batch

4.1.2. AMD pProf

The AMD pProf is a suite of powerful tools that help developers optimize software for performance or power.
Information can be found at the AMD web pages [50]. It's atool that collects information during arun andin a
second step generates areport of what was collected. Quite similar to other similar tools. It hasfull support for the
AMD processor. It isacommand line tool which makes it easy to use in scripts.

[opt / AMDUPr of _1. 0- 271/ bi n/ AMDCpuPr ofi | er col |l ect bin.and. gcc/ ng. D. x

(Thetool installsitself under /opt)

The user guide is available on-line [54].

4.1.3. Performance reports

A very user friendly tool is the commercia Allinea Performance Reports [55]. Thisislicensed software.

The performance reporter isavery easy tool to use, an excellent tool for normal usersto run and to provide aquick
and easy overview of the application behavior. This can be handy when they submit request for support or CPU
guotato provide a quick and easy overview of the application.

21

Best Practice Guide - AMD EPYC

Figure 9. Performance report example

26.10.2017
Command
Resources
Memory:

H Tasks
allinea [.
PERFORMANCE

Starttime
REPORTS Total time
Full path:

Summary: dgemm.x

Compute 100.0%
MPI 0.0%
110 0.0%

This application runwas Com

dgemm.x - Performance Report

/home/olews/blas/dgemm.x

1 node (64 physical, 128 logical cores per node)
252 GiB per node

1 process, OMP_NUM_THREADS was 32
epyc

Thu Oct 26 2017 08:55:01 (UTC+02)

791 seconds (about 13 minutes)
/home/olews/blas

is Compute-bound in this configuration

Time spent running application code. High values are usually good.
This is very high; check the CPU performance section for advice

Time spent in MPI calls. High values are usually bad.
This is very low; this code may benefit from a higher process count

Time spent in filesystem I/O. High values are usually bad.
This is negligible; there's no need to investigate 1/O performance

nd. A breakdown of this time and advice for investigating further is in the CPU section below.

As very little time is spent in MP| calls, this code may also benefit from running at larger scales.

CPU MPI

A breakdown of the 100.0% CPU time: A breakdown of the 0.0% MPI time:
Single-core code 0.7% Time in collective calls 0.0%
OpenMP regions 99.3% Time in point-to-point calls 0.0%
Scalar numeric ops 16% Effective process collective rate 0.00 bytes/s

Vector numericops 44.3%

Memory accesses ~ 52.7%

Effective process point-to-point rate 0.00 bytes/s

No time is spent in MPI operations. There's nothing to optimize here!

The per-core performance is memory-bound. Use a profiler to identify
time-consuming loops and check their cache performance

110 OpenMP

A breakdown of the 0.0% I/O time: A breakdown of the 99.3% time in OpenMP regions:
Time in reads 0.0% Computation 99.9%

Time in writes 0.0% Synchronization <0.1%

Effective process read rate 0.00 bytes/s

Effective process write rate 0.00 bytes/s

No time is spent in I/0 operations. There'

Memory

Per-process memory usage may also affect scaling

Mean process memory usage 55.8 GiB
Peak process memory usage 55.9 GiB

Peak node memory usage 23.0%

The peak node memory usage is very low. Larger problem sets can be

run before scaling to multiple nodes.

Physical core utilization 50.0%

System load 49.3%

s nothing to optimize here! Physical core tilization is low and some cores may be unused. Try

increasing OMP_NUM_THREADS to improve performance

Energy

A breakdown of how energy was used:
CcPU t supported %
System %
Mean node power not supported W
Peak node power 0.00 W

Energy metrics are not available on this system.
CPU metrics are not supported (no intel_rapl module)

file:///work/dgemm_1p_1n_32t 2017-10-26_08-55.htmI

To run the analysis and generate the report is very easy. An exampleis shown here:

[opt/allinealreports/bin/perf-report

(the path is the default path of perf-report). This command will generate two files, one text file which can be
displayed on any terminal with text based graphics and an HTML based graphical view like the figure above.

4.2. General Hints for Interpreting Results from all

tools

Theratio between scalar and vector work isvery important when doing computational based work. A high fraction
of vector versus scalar code is a sign that the vector units are occupied and do operations in parallel. With 256
bits the vector unit can do four 64-bits double precision operationsin paralel, or eight if 32-bits single precision
is used. Same metrics apply for integer work. Recognizing vectorizable code is usualy a compiler issue, some
compilers do a better job than others. It's al'so an issue how the programmer write code to facilitate vectorization.

./ dgemm x

11

22

Best Practice Guide - AMD EPYC

Memory access is another crucial aspect of application performance. The report also provides an estimate of
how much time is spent in memory access. A very high fraction here might indicate a memory bandwidth bound
application. Hints are provided to initiate further work.

Time spent doing 10 and 1O bandwidth is shown in performance reports above. For the bandwidth number this
should be compared with the storage device bandwidth. There might be 10 bottlenecks. Could another storage
device been used during the run ? Maybe there is a solid state disk available or even a PCle-NVRAM disk ? If
IO is abottleneck and alarge fraction is spent in 10 an analysis of the IO pattern is needed. It might be that the
IO is random access using small records which is very bad.

As the NPB-BT example above is an OpenMP application (see Section 3.1.2.1) there is no information about
MPI, evident from the performance reports. If MPI applications are analyzed there should be data showing MPI
functions usage. If functions like MPI_WAIT, MPI_WAIT_ALL or MPI_BARRIER show up it could be that a
lower number of ranks might be a better option. If not so, areview of the input or source code is needed.

Thread utilization is another important parameter. The perf tool's interactive top command can provide informa-
tion about thread utilization. How much time is spent in computation and how much time is spent waiting for
synchronization?

The perf utility aboveit's evident that when the "barrier" functions are on the top list something is not really right.
It might be that too many cores are being used. In that case, checking the scaling isagood idea. The ssimpletable
below shows the NPB benchmark ft scaling. With this poor scaling it's no wonder that the OpenMP "barrier” is
high up on the topcpu list.

cores Performance
NBP test FT speedup
1 3351.05
2 6394.50 30000 1
4 13101.09 25000
8 14349.24 g
= 20000 4
16 24764.92 g
32 35569.76 £
64 24034.49 10000 1
96 16752.52 5000
128 1534817 6 2'0 4'0 éo éo 160 150

Cores

It is always a good idea to take a deeper look when things like barrier, wait, mutex and related library or kernel
functions show up on the "perf top" list. It might be asign of poor scaling or slowdown as the figure above shows.

23

Best Practice Guide - AMD EPYC

5. Tuning
5.1. Advanced / Aggressive Compiler Flags

5.1.1. GNU compiler

The GNU set of compilers has full support for the Zen core architecture and all the normal gcc/gfortran flags will
work as with any x86-64 processor. In the programming section some relatively safe flags are suggested. Below
some flags controlling vectorization are tested and the performance are compared.

5.1.2. Intel compiler

The Intel compiler can generate code for the Zen architecture and make use of the AVX and AV X2 instructions.
However, it's not guaranteed to work as Intel software does not really care about how it optimizesfor other proces-
sors. To be on the safe side one must use flags that guarantee that the code can run on any x86-64. However, this
yields very low performance. In the examples below the vector flags are set in order to produce 256 hits AV X/
AV X2 and FMA instructions

5.1.3. PGI (Portland) compiler

The current release of the PGI compiler (17.9) does not support the Zen architecture. It will however generate
AVX, AV X2 and FMA instructions if enforced by the correct compiler flags.

5.1.4. Compilers and flags

One obvioustest to compare compilersis by testing their generated code. One simpletest isto compile the Fortran
version of the general matrix-matrix multiplication code. Thisis a well known code and does represent a more
general form of coding using nested loops iterating over 2-dimensional arrays.

The test is done by compiling the dgemm.f (standard Netlib reference code) with different Fortran compilers
and linking with gfortran and run using a single core. The size is 10000x10000 yielding a footprint just over 2
GiB. Emphasis has been on vectorization, hence this is not a complete exploration of all possible optimization
techniques like loop unrolling, fusing, prefetch, cache fit etc.

Table 15. Compiler performance

Compiler Flags Wall time
[seconds]
gfortran -O3 -msse4.2 -m3dnow 617.95
gfortran -O3 -march=znverl -mtune=znverl -mfma 619.85
gfortran -O3 -march=haswell -mtune=haswell -mfma 507.68
gfortran -O3 -march=haswell -mtune=haswell -mfma-mavx2 510.09
gfortran -O3 -march=broadwell -mtune=broadwell -mfma 509.83
gfortran -O3 -march=znverl -mtune=znverl -mfma-mavx2 -m3dnow 619.42
gfortran -0O3 -mavx -mfma 546.01
gfortran -O3 -mavx2 -mfma 545.06
gfortran -Ofast -mavx2 554.99
pgfortran -fast -Mipa=fast,inline 513.77
pgfortran -0O3 -Mvect=simd:256 -Mcache aign -fma 498.87
ifort -03 514.94

24

Best Practice Guide - AMD EPYC

Compiler Flags Wall time
[seconds]
ifort -O3 -xAVX -fma 236.28
ifort -O3 -xSSE4.2 214.11
ifort -O3 -XCORE-AV X2 -fma 175.57

The most striking result from this simple test is that the Intel compiler does a good job generating code for the
Zen architecture. The Intel Fortran compiler clearly outperformsthe GNU Fortran compiler when it comesto this
nested loop on matrices problems.

Another interesting result is that when using the gfortran compiler, optimizing for Zen processor (-march=znverl)
yields lower performance than optimizing for Haswell. It looks like the code generator is more sophisticated for
the Intel architectures than for the AMD architectures. From this we can conclude that care must be taken to not
just rely on using tuned code for the current processor. In addition exploration of the effects of tuning for other
architectures is often needed to find a sweet spot.

The Zen core is optimized for 128 bits vector operations and the SSE4.2 code is of that kind. The performance
gives some indications of this, because the SSE code (128 bits only and no FMA) outperforms the AV X code
(256 bits and FMA). However, they are both outperformed by the AV X2 instructions (256 bits and FMA).

Below is an extract of the assembly code generated by ifort with the flag -xCORE-AV X2, which yielded good
performance. It's evident that there are AV X2 instructions by the fact that 256 bits wide ymm vector registers
are used.

vl pd (% di,% 10,8), %mb, %nnb #260. 27
vl pd 64(% di, % 10,8), %mD, %mil0 #260. 27
vfmadd231pd (% bx, % 10, 8), %nmmb, %mB #260. 27
vl pd 96(% di , % 10,8), %mil2, %mi3 #260. 27
vaddpd %y nil, %nm6, %y mmB #260. 27
vnovupd 32(% 14), %ynml #260. 48
vfmadd231pd 64(% bx, % 10, 8), %mD, %mSB #260. 27
vl pd 32(%wdi,% 10,8), %Wmil, %mv #260. 27
vfmadd231pd 32(% bx, % 10, 8), %mil, %m?® #260. 27
vaddpd %ymB, %, Y%y nmill #260. 27
vfmadd231pd 96(% bx, % 10, 8), %mil2, %mR #260. 27
vaddpd %yrmil, %mi0, %mi4 #260. 27

In addition it's clear that the compiler can effectively vectorize the code by the fact that the instructions operate on
packed vectors of double-precision (64 hits) floats. Instructions ending on "pd" (packed double) indicate that the
instructions operate on a full vector of entries, in this case four double precision numbers (64 bits x 4 = 256 hits).

The PGI pgfortran also generates AV X2 and FMA instructions which is most probably why it performs better
than gfortran. Even if the PGI compilers at the time of writing did not explicitly support the Zen architecture it
does generate 256 bits AV X/AV X2 and FMA instructions when asked.

5.2. Single Core Optimization
5.2.1. Replace libm library

The single most obvious tuning is to replace the standard math library with the AMD optimized one. For some
strange reason the savage benchmark runs magnitudes slower when using the original one. Install thelibM library
from AMD and just replace the symbolic link so it points to the correct optimized library and all applications that
used libm will benefit from the optimized library.

cd /1ib64; nv libmso.6 |libmso.6.0ld
In -s Jusr/local/lib64/libandlibmso |ibmso.6
libmso.6 -> /usr/local/lib64/I1ibandlibm so

25

Best Practice Guide - AMD EPYC

Not all applications will benefit as strongly as the savage benchmark, but basic scalar numerical functions like
square root, logarithms, trigonometric etc will benefit strongly. See Table 10 for actual numbers.

Replacing the standard math library with the AMD optimized one, requires root access and might not be an op-
tion on all production systems. To do thisin user space the user need to link with the AMD library and set the
LD _LIBRARY pathin order to pick up the libm AMD library first.

In some cases the global replacement of libm can cause unforeseen problems, in those cases the usage of the
LD_LIBRARY_PATH environment variable and asymbolic link to the libamdlibm file or arenameis needed. In
the though casesaLD_PREL OAD environment variable can be used.

5.3. Advanced OpenMP Usage

5.3.1. Tuning / Environment Variables

There are arange of environment variables that affect the OpenMP applications performance. The processor and
NUMA node placement is explained in Section 5.4.1.

For the tests below a simple reference implementation of matrix matrix multiplication program (dgemm.f) was
used unless stated in the table or figure.

Table 16. Variable for OpenM P tuning, scheduling policy

Variable Performance (sec)
OMP_SCHEDULE ='DYNAMIC' 769.68
OMP_SCHEDULE ='STATIC' 738.57

Table 17. Variable for OpenMP tuning, wait policy

Variable Perfor mance (sec)
OMP_WAIT_POLICY ="'PASSIVE' 852.97
OMP_WAIT_POLICY ='ACTIVE' 830.08

The numbersin each table measured relative to each other. Executablesin each table have been build for the test
and might differ, hence numbers cannot be compared across tables, only relative numbers within each table yield
valid comparison.

The effect on performance varies from application to application, some are more sensitive to changes in setup,
scheduling and policies than others. Only thorough testing will enable you to zero in on the optimal settings.
Generally settingsinfluencing memory access arethe most important. Setting OMP_DISPLAY_ENV=VERBOSE
will cause execution of the application to emit alist like the one given below at the start of execution.

OPENMP DI SPLAY ENVI RONVENT BEG N
_OPENWP = ' 201511'

OVP_DYNAM C = ' FALSE

OWP_NESTED = ' FALSE

OVP_NUM THREADS = ' 32'

OWP_SCHEDULE = ' STATI C

OWP_PROC BI ND = ' TRUE

OWP_PLACES = '{0: 32, 64: 32}, {32: 32, 96: 32}
OWP_STACKSI ZE = ' 0'

OWP_WAI T_POLI CY = ' ACTI VE
OWP_THREAD LIM T = ' 4294967295
OVP_MAX_ACTI VE_LEVELS = ' 2147483647
OVP_CANCELLATI ON = ' FALSE'
OWP_DEFAULT_DEVICE = ' 0'
OWP_MAX_TASK PRIORITY = ' 0'
GOWP_CPU AFFINITY = '

26

Best Practice Guide - AMD EPYC

GOWP_STACKSI ZE = ' 0’
GOVP_SPI NCOUNT = ' 30000000000
OPENVP DI SPLAY ENVI RONMVENT END

Moreinformation about the different settings can befound at the GNU OpenM P web site [51]. The variablestested
above are just two out of many that can have an effect on the application tested. In addition variables optimal
for a certain number of threads might not be optimal for a different number of threads. Again thorough testing is
needed to arrive close to optimal performance.

5.3.2. Thread Affinity

The processor and NUMA node placement is explained in Section 5.4.1. The variable GOMP_CPU_AFFINITY
control thread binding to cores.

5.4. Memory Optimization
5.4.1. Memory Affinity (OpenMP/MPI/Hybrid)

The EPY C based system is a distinct NUMA system. The command numactl shows how the different memory
banks are mapped and laid out.

-bash-4. 2% nunmact! -H
avai |l abl e: 8 nodes (0-7)
node O cpus: 0123456 7 64 65 66 67 68 69 70 71

node 0 size: 32668 MB

node 0 free: 29799 MB

node 1 cpus: 8 9 10 11 12 13 14 15 72 73 74 75 76 77 78 79

node 1 size: 32767 MB

node 1 free: 31617 MB

node 2 cpus: 16 17 18 19 20 21 22 23 80 81 82 83 84 85 86 87

node 2 size: 32767 MB

node 2 free: 31785 MB

node 3 cpus: 24 25 26 27 28 29 30 31 88 89 90 91 92 93 94 95

node 3 size: 32767 MB

node 3 free: 31399 MB

node 4 cpus: 32 33 34 35 36 37 38 39 96 97 98 99 100 101 102 103
node 4 size: 32767 MB

node 4 free: 20280 MB

node 5 cpus: 40 41 42 43 44 45 46 47 104 105 106 107 108 109 110 111
node 5 size: 32767 MB

node 5 free: 14751 MB

node 6 cpus: 48 49 50 51 52 53 54 55 112 113 114 115 116 117 118 119
node 6 size: 32767 MB

node 6 free: 8747 MB

node 7 cpus: 56 57 58 59 60 61 62 63 120 121 122 123 124 125 126 127
node 7 size: 32767 MB

node 7 free: 19613 MB

node di st ances:

node 0 1 2 3 4 5 6 7
10 16 16 16 32 32 32 32
16 10 16 16 32 32 32 32
16 16 10 16 32 32 32 32
16 16 16 10 32 32 32 32
32 32 32 32 10 16 16 16
32 32 32 32 16 10 16 16
32 32 32 32 16 16 10 16
32 32 32 32 16 16 16 10

NoghkwNREO

27

Best Practice Guide - AMD EPYC

Thedistance map clearly showsthefour quadrantswhere two quadrants are present on each socket. With 8 memory
banks distributed around the system it's important to schedule threads and ranks in an optimal way. As for all
NUMA systems this can be left to the OS, but in many cases the kernel does not place the threads or move them
in anone optimal way. A simple example is a threaded shared memory program that allocates the data structure
in thread number one. Then all the data will (if it fits) reside in the first memory bank as thisislocal to the first
thread. Consequently, when later on the program enters a parallel region most of the datawill reside on amemory
bank not local to the thread.

5.4.1.1. Thread placement

User placement of threads can be done in several ways, by command line tools and/or by means of environment
variables. There are also more hidden ways within the various programming languages. It is far beyond the scope
of thisguideto gointo this, but an application might show unexpected thread behaviour for the particular program.

5.4.1.1.1. Numactl

Usage of numactl is avery easy way of regquesting threads to be placed on cores with different memory charac-
teristics. Two common examples are:

numact! -1 prog.x
numact! -i all /prog.x

Thefirst one request that the threads are placed local to the memory, it also implies that memory will be allocated
on the local NUMA memory bank (until thisis completely filled). The second example will allocate memory in a
round robin fashion on all the available NUMA memory banks (in this example "all" is used, but various subsets
are possible).

5.4.1.1.2. Environment variables

The GNU OpenMPlibrary [19] usesarange of different environment variablesto control the placement of threads.
Thefollowing table shows some of the most used. For afull listing and documentation refer to the GNU OpenMP
library as there are many options with these variables.

Table 18. GNU OpenM P environment variables

Variable Effect Example

OMP_DISPLAY_ENV |If set to TRUE, the OpenMP version OMP_DISPLAY_ENV=VERBOSE
number and the values associated with
the OpenMP environment variables are
printed to stderr.

OMP_PROC_BIND Specifies whether threads may be moved |OMP_PROC_BIND=TRUE
between processors. If set to TRUE,
OpenM P threads should not be moved, if
set to FAL SE they may be moved.

OMP_PLACES The thread placement can be either spec- | OMP_PLACES=sockets
ified using an abstract name or by an ex-
plicit list of the places.

GOMP_CPU_AFFINITY |Binds threads to specific CPUs. The GOMP_CPU_AFFINITY="03 1-2"
variable should contain a space-separat-
ed or comma-separated list of CPUs, in-
dividual or dash for ranges.

In the verbose case of OMP_DISPLAY _ENV alisting likethe onein Section 5.3.1 isemitted. The verbose variant
adds the GNU OpenMP specific variables.

Thethread placement can have arather large impact on performance. The table below showsthe effect on asimple
stream memory bandwidth benchmark when run with the different placement settings, the PROC_BIND must be
set to true.

28

Best Practice Guide - AMD EPYC

Table 19. OMP environment variables effect

OMP_PLACES Bandwidth [MiB/s]
threads 43689
cores 70105
sockets 116478

If you want to track the placement of threads during runtime, you can use the utility "htop". In addition if the
OMP _DISPLAY_ENV is set to verbose the placement mapping is also written to stderr.

5.4.1.2. Rank placement

For MPI programs the placement of the ranks can be controlled by using the runtime environment variables or

by options of mpirun/mpiexec.

In the case of OpenMPI's mpirun you could use the“ —bind-to” flag like this:

- - bi
- - bi
- - bi
- - bi
- - bi
- - bi

nd-to
nd-to
nd-to
nd-to
nd-to
nd-to

hwt hr ead

core

socket
nunma

| 2cache
| 3cache

Thiswill pin the ranks to cores according to the value of the option. If pinned to acore it will not move from that
core during the lifetime of the execution. If it's pinned to a NUMA memory bank it can be moved to any core
local to that NUMA bank. It's not always obvious which strategy will yield optimum performance. A bit of trial

and error is often required.

5.4.2. Memory Allocation (malloc) Tuning

With an architecture like the EPY C, with 8 NUMA memory banks per node [8], memory allocation isimportant,
especialy when running multi-threaded, shared memory applications. The system tested is a two socket node,

hence 8 NUMA banks.

In some cases where the data is allocated differently from what the current multi-threaded region finds optimal
the kernel will try to migrate the processes. This takes a lot of cpu and you'll spot it immediately when running
top. Something like thisis generally not good. The only process that should use CPU isthe user process.

PI D
28
69

395

355

335

110

8
48
10
89

435

375

USER
r oot
r oot
r oot
r oot
r oot
r oot
r oot
r oot
r oot
r oot
r oot
r oot

PR N

rt
rt
rt
rt
rt
rt
rt
rt
20
rt
rt
rt

cNeoNoNeolololoNolNoNolNelNe]

VIRT RES
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

SHR S

0

cNeoNoNeoNolololoNoNoNe

NuOuuunuunmuumwaonnmnom

%UCPU %VEM
25.
15.
10.

PNNWWWEOoO©O

0

DWWOoOOoOo UTN O

0.

S S S e e e

N
eeeNeRoROoOOR

cNeoNoNeolololoNolNoNolNelNe]

TI ME+
45,
25.
14.
51.
05.
14.
00.
51.
44,
22.
08.
22.

23
82
11
62
99
72
62
04
25
74
64
57

COVWAND
mgration/4
mgration/12
mgration/ 76
m gration/ 68
m gration/ 64
m gration/ 20
mgration/0
nmgration/8
rcu_sched

m gration/ 16
m gration/ 84
mgration/ 72

Seeing thislist of processesis an indication that something is wrong and action is required.

There are two more tools that are handy when monitoring memory allocation and processor placements. These
are numactl and numastat. The numactl command shows how much of the memory in each of the NUMA nodes
isactually allocated, an example is given below (numactl -H):

29

Best Practice Guide - AMD EPYC

avai |l abl e: 8 nodes (0-7)

node O cpus: 0123456 7 64 65 66 67 68 69 70 71

node O size: 32668 MB

node O free: 1201 MB

node 1 cpus: 8 9 10 11 12 13 14 15 72 73 74 75 76 77 78 79

node 1 size: 32767 MB

node 1 free: 277 MB

node 2 cpus: 16 17 18 19 20 21 22 23 80 81 82 83 84 85 86 87

node 2 size: 32767 MB

node 2 free: 6904 MB

node 3 cpus: 24 25 26 27 28 29 30 31 88 89 90 91 92 93 94 95

node 3 size: 32767 MB

node 3 free: 7659 MB

node 4 cpus: 32 33 34 35 36 37 38 39 96 97 98 99 100 101 102 103
node 4 size: 32767 MB

node 4 free: 6652 MB

node 5 cpus: 40 41 42 43 44 45 46 47 104 105 106 107 108 109 110 111
node 5 size: 32767 MB

node 5 free: 3402 MB

node 6 cpus: 48 49 50 51 52 53 54 55 112 113 114 115 116 117 118 119
node 6 size: 32767 MB

node 6 free: 10058 MB

node 7 cpus: 56 57 58 59 60 61 62 63 120 121 122 123 124 125 126 127
node 7 size: 32767 MB

node 7 free: 2131 MB

It's clear that the allocated memory is distributed reasonably evenly over al NUMA nodes. Running again with the
numactl settings'-I' for local and '-i all' for interleaved over all NUMA nodeswill show how the memory allocation
is distributed. Doing this repeatedly (watch -n 1 numactl -H) during the allocation phase of the application can
give an insight of how memory are alocated on the different NUMA nodes.

Numastat is atool to show per-NUMA-node memory statistics for processes and the operating system. Below is
shown an example of a numastat output (only 3 out of 8 NUMA nodes are shown):

nodeO nodel node2
nume_hi t 140742970 145695513 135145845
numa_ni ss 951978 889448 758010
nunma_f orei gn 781077 342810 471730
interleave_hit 106502 130910 129820
| ocal _node 140736519 145567338 135017372
ot her _node 958429 1017623 886483

The numbersto monitor arethe "numa_miss' and "numa._foreign" asthey show memory accessesto dataresiding
in NUMA nodes that are not local. Accesses to none loca NUMA nodes have higher access times and lower
bandwidth and generally are bad for performance.

NUMA awareness is important for OpenMP (shared memory) applications and also for MPI applications where
more than one rank is running per node. For a running process the memory can be local or remote if the running
process is moved to another core. This can (will) happen isthere is no processor binding.

There are some measures to take to try to keep data on local NUMA nodes. The simplest is to use the "numactl
-I" command to allocate on the local memory. However, if the application does the allocation on a single thread
then the data will be allocated on the NUMA nodes local to this thread, which can have an adverse effect.

Table 20. Memory allocations and cor e binding

Settings Wall time [seconds]
numact! -| 1166.15
numact! -i all 1245.62

30

Best Practice Guide - AMD EPYC

Settings Wall time [seconds]
OMP_PROC_BIND=TRUE; OMP_PLACES=sockets 701.19
OMP_PROC_BIND=TRUE; OMP_PLACES=cores 879.63
OMP_PROC_BIND=TRUE; OMP_PLACES=threads 854.64

There are some other environment variablesto bind the threads to specific cores, however, these are more complex
and require more in-depth discussion than possible in this guide.

5.4.3. Using Huge Pages

The Transparent Huge Pages (THP), a Linux memory management system that is supported by newer kernels,
provide uswith asimpleway of using huge pages. Thefile/sys/kernel/mm/transparent_hugepage/enabled contains
information about the current setting of THP.

cat /sys/kernel/mitransparent hugepage/ enabl ed
[al ways] madvi se never

Where the word in brackets is the currently selected setting.

The status of the system's memory can be obtained by displaying the file : /proc/meminfo, an example (a large
portion is skipped):

Menilot al : 263921288 kB
Menfr ee: 170687204 kB
MemAvai | abl e: 201953992 kB
Buffers: 0 kB
Cached: 31003020 kB
AnonHugePages: 58599424 kB
HugePages_Tot al : 0
HugePages_Fr ee: 0
HugePages_Rsvd: 0
HugePages_Sur p: 0
Hugepagesi ze: 2048 kB
Di r ect Map4k: 232524 kB
Di rect Map2M 10147840 kB

Di rect MaplG 257949696 kB
If the THP is disabled the AnonHugePages show zero.

Enabling or disabling THP can have an effect on application performance, it is not always advised to haveit turned
on. The following table shows a simple dgemm test with hugepages enabled and disabled. As this requires root
access a trade-off must be used since it cannot be changed for each application.

Table 21. Transparent Huge Pages performance

Settings Wall time [seconds]
aways 806.51
never 1225.66

5.4.4. Monitoring NUMA pages

Automatic NUMA Balancing is now implemented in most kernels. Automatic NUMA Balancing migrates data
on demand to memory nodes that are local to the CPU accessing that data. Depending on the workload, this can
dramatically boost performance when using NUMA hardware.

Thekernel keepstrack of the NUMA pages and theinformation isavailablein the/proc/vmstat/ directory, example
below:

31

Best Practice Guide - AMD EPYC

$cat /proc/vmstat | grep NUMVA
numa_hit 1441838287

numa_m ss 10935731
numa_forei gn 10935731

nume_i nterl eave 1182389

nume_| ocal 1440882623
nume_ot her 11891395

numa_pt e_updat es 24963187675
numa_huge_pt e_updat es 47638501
nume_hi nt_faults 557363093
nume_hint_faults | ocal 482115590
nunma_pages_mi grated 922781927

The numbers of importance are the ones about faults and about migrated pages. The meaning of some of the
numbers above is explained in the list below:

NUMA metrics

» numa_hit: Number of pages allocated from the node the process wanted.

» numa_miss: Number of pages allocated from this node, but the process preferred another node.
» numa_foreign: Number of pages allocated on another node, but the process preferred this node.
e numa_local: Number of pages allocated from this node while the process was running locally.

» numa_other: Number of pages allocated from this node while the process was running remotely (on another
node).

» numa_interleave _hit: Number of pages alocated successfully with the interleave strategy.

The following table shows the effect on NUMA pages when running with different thread binding.

Table 22. Effect on NUMA pages

Binding Performance numa_hits numa_ numa_ numa_
[Mflops]| hint_faults |hint_faults local | pages migrated

None 150487 48705 103660 81686 1950659

OMP_PROC-=true 77277 36815 169381 154593 612369

numactl -| 136236 28575 92057 68816 2696390
numactl -i all 104236 23816 0 0 0

GOMP_CPU_ 150315 31895 93997 80252 750545

AFFINITY=0-63

The NUMA hitsis an important number. The faults and migrated pages change with thread layout. The value of
the faults increases while the migrated pages drops, the effect on performance is not always predictable.

5.5. Possible Kernel Parameter Tuning
5.5.1. NUMA control

There are a battery of kernel parameters controlling the systems behaviour. When building a kernel there are a
alot of compromises and as always one set is not always optimal. Some of the settings might be optimal for a
single application and counterproductive for another. Finding the best set for a multiuser, multiapplication general
purpose HPC system is often challenge and mostly compromise. Tests below have only been done for a single
application and is acting areference point to start.

32

Best Practice Guide - AMD EPYC

Many of the settings deal with NUMA control. The kernel can control how NUMA banks and pages are all ocated,
deallocated or moved. The defaults might not always suite computational loads. Statistics for a NUMA system
data can be extracted from the /proc file system.

The following table gives an overview of some tested parameters. The benchmark OpenMP version of BT from
the NPB benchmark suite (see Section 3.1.2.1), running with 64 threads on 64 cores, was selected as the test
benchmark. No core affinity and thread binding was set. If these options would have been set, the picture might
look different, - see Section 5.4.4 for more on this.

Table 23. Kernel NUMA parameter stests (default valuesin boldface)

Kernel parameter Value BT performance
(performance met-
ric for the BT bench-
mark, higher is better)
i 0 53222
/proc/sys/kernel/numa_balancing
1 148366
500 139985
1000 149104
/proc/sys/kernel/numa_balancing_scan_delay _ms 2000 147998
5000 131316
10000 147540
64 154856
128 146851
256 154487
512 158354
/proc/syslkernel/numa_balancing_scan_size mb 1024 133910
2048 151780
4096 139636
8192 141672
16385 158746
250 147470
500 151427
proc/sysikemnel/ _— 1000 160015
numa_balancing_scan period_min_ms
5000 149883
10000 129752

With many parameters to optimize and unknown cross effects the job of finding the optimal setting can be rather
large and time consuming. Normally the defaults do areasonably good job. It's possible to do some manual tuning
to get a bit more performance. For memory intensive HPC applications one might expect that NUMA kernel
parameter tuning will have highest return of effort.

The recomendation isto check the defaults and only do alimited set of changes for the NUMA kernel parameters.

5.5.2. Scheduling control

There are anumber of parameters controlling the kernel's scheduling of processes/threads. Scheduling documen-
tation can be found in [52].

The table below shows some selected scheduling parameters tested. The same BT benchmark was used asin the
table above, with NUMA control.

33

Best Practice Guide - AMD EPYC

Table 24. Kernel scheduling parameterstests

Kernel parameter Value BT performance
Isysikernel/mm/t t_h e/enabled always 149033
ernel/mm/transparent_hu en
> P oA never 141652
i 0 152828
Iproc/sys’kernel/sched tunable scaling
2 130206
500 121845
/proc/sysikernel/sched_rr_timeslice_ms 1000 160231
3000 150418
1000000 143662
/proc/sys/kernel/sched_wakeup_granularity _ns 10000000 155970
50000000 143894
12000000 154494
24000000 154590
/proc/sys/kernel/sched latency ns
32000000 130271
48000000 110926
100000 141607
250000 144527
o 500000 145611
/proc/sys/kernel/sched_migration_cost_ns
750000 151107
1000000 138100
1500000 149257

Some of these parameters can have a significant impact on performance of different applications. Which parame-
ters do have a significant impact on the application tested is not easy to guess up front. More information can be
found at Suse's web pages, scheduling [53].

The recomendation isto keep hugepages enabled for HPC load. The default kernel parameters may not be optimal
for HPC load as servers are often used for web services and database servers, both which have adifferent behavior
from HPC.

Best Practice Guide - AMD EPYC

6. Debugging
6.1. Available Debuggers

Several debuggers exist, of which the GNU debugger gdb comes with the Operating system. A commercial state-
of-the-art debugger isDDT from Allinea[56]. This debugger has support for AMD EPY C. Seereference for more
information, Y et another commercial debugger is TotalView from Rogue Wave [57].

Thisis not atutoria for the GNU debugger gdb, but it's interesting to note that by halting a numeric kernel one
might peek into the instructions executed and look for effective instructions that operate on vectors. Below we see
fully populated vectors (* pd packed double or * ps packed single) instructions:

(gdb) set disassenbly-flavor att

(gdb) di sassenbl e

Dunp of assenbler code for fuNcti on dgenm ker nel
0x00002aaaaaf bdf 97 <+407>: add $0x60, % si
0x00002aaaaaf bdf 9b <+411>: vnul pd %m0, %y mMmB, Y%y M4
0x00002aaaaaf bdf 9f <+415>: vpernpd $0xbl, %D, %D
0x00002aaaaaf bdf a5 <+421>: vnul pd %m0, %y mi, %y mv
0x00002aaaaaf bdf a9 <+425>: vnovups -0x60(% si), %nml
0x00002aaaaaf bdf ae <+430>: vnul pd %m0, % m2, %ymil
0x00002aaaaaf bdf b2 <+434>: vnovups -0x40(% si), %R
0x00002aaaaaf bdf b7 <+439>: vnul pd %m0, %y mMmB8, Yy mi5
0x00002aaaaaf bdf bb <+443>: vnovups -0x20(% si), % B
0x00002aaaaaf bdf cO <+448>: vnovups -0x60(% di), %D
0x00002aaaaaf bdf c5 <+453>: vfmadd231lpd %m0, %y mil, %y md
0x00002aaaaaf bdf ca <+458>: vfnmadd231pd %m0, %y m2, Y%y mB

The assembly listing comesin two flavours, for Intel and AT&T [58].

6.2. Compiler Flags

As always the -g flag is used to request the compiler to insert debugging information. With GNU it can also be
used together with -O. However, afew less commonly debug options are:

Table 25. Debugging compiler flags (gnu)

Flag Description
-g Produce debugging information in the operating system's native format
-ggdb Produce debugging information for use by GDB.
-glevelN Request debugging information and also use level to
specify how much information. The default level is 2.

Severa other options exist. Please refer to gcc documentation or man gec to learn more about these less common
options.

35

Best Practice Guide - AMD EPYC

Further documentation

Books

[1] Best Practice Guide - Intel Xeon Phi, January 2017, http://www.prace-ri.eu/| MG/pdf/Best-Practice-Guide-
Intel-Xeon-Phi-1.pdf .

Websites, forums, webinars

[2] PRACE Webpage, http://www.prace-ri.eu/.
[3] AMD EPYC Data Shest, https://www.amd.convsysten/files/2017-06/AMD-EPYC-Data-Sheet. pdf.

[4] AMD EPYC Server Processors, https://www.amd.comVen/products/epyc-server [https://mwww.amd.com/en/
products/epyc-server%20] .

[5] EPYC wiki page, https://en.wikipedia.org/wiki/Epyc.

[6] EPYC 7601 documentation, https://en.wikichip.org/wiki/amd/epyc/7601 .
[7] AMD Infinity Fabric [https://en.wikichip.org/wiki/amd/infinity fabric] .
[8] AMD EPYC 7601, https://mww.amd.com/en/products/cpu/amd-epyc-7601.

[9] Intel Xeon Platinum 8180 Processor, https://ark.intel.com/products/120496/1 ntel-Xeon-Plat-
inum-8180-Processor-38 5M-Cache-2_50-GHz.

[10] "Szing Up Servers: Intel's Skylake-SP Xeon versus AMD's EPYC 7000 - The Server CPU Battle of the
Decade?', Memory Subsystem:Bandwidth [https://www.anandtech.convshow/11544/intel-skylake-ep-
vs-amd-epyc- 7000-cpu-battle-of-the-decade/12] .

[11] AOCC compilers, website [http://devel oper.amd.com/amd-aocc/] .
[12] Wikichip on Zen [https://en.wikichip.org/wiki/amd/microar chitectures/zen].
[13] Intel documention, svml [https://software.intel .com/en-us/node/524288] .

[14] Intel documention, Latency checker [https://software.intel.com/en-us/articles/intelr-memory-latency-check-
er].

[15] Intel, MKL link line advisor [https://software.intel.conVen-ug/articles/intel-mkl-link-line-advisor] .
[16] Netlib, Basic linear Algebra [http://mww.netlib.org/blas/index.html].

[17] OpenBLAS, Basic linear Algebra [https://www.openblas.net/].

[18] GS., GNU <cientific Library [https://mww.gnu.org/software/gs/].

[19] GNU, OpenMP [https://gcc.gnu.org/wiki/openmp] .

[20] FFTW, Fast Fourier Transform library [http://mww.fftw.org/].

[21] OpensBLI website, [https://opensbli.github.io].

[22] OpenSBLI build instructions with GNU 7.2.0, [https://github.comyhpc-uk/ar cher-benchmarks/blob/mas-
ter/apps/OpenBLI/source/AMD_Naples build_gcc.md].

[23] OpensBLI buildinstructionswith Intel17, [https://github.com/hpc-uk/archer-benchmarks/bl ob/master/apps/
OpenBLI/source/AMD_Naples build_intel17.md].

36

http://www.prace-ri.eu/IMG/pdf/Best-Practice-Guide-Intel-Xeon-Phi-1.pdf
http://www.prace-ri.eu/IMG/pdf/Best-Practice-Guide-Intel-Xeon-Phi-1.pdf
http://www.prace-ri.eu/
https://www.amd.com/en/products/epyc-server%20
https://www.amd.com/en/products/epyc-server%20
https://www.amd.com/en/products/epyc-server%20
https://en.wikipedia.org/wiki/Epyc
https://en.wikichip.org/wiki/amd/epyc/7601
https://en.wikichip.org/wiki/amd/infinity_fabric
https://en.wikichip.org/wiki/amd/infinity_fabric
https://www.amd.com/en/products/cpu/amd-epyc-7601
https://ark.intel.com/products/120496/Intel-Xeon-Platinum-8180-Processor-38_5M-Cache-2_50-GHz
https://ark.intel.com/products/120496/Intel-Xeon-Platinum-8180-Processor-38_5M-Cache-2_50-GHz
https://www.anandtech.com/show/11544/intel-skylake-ep-vs-amd-epyc-7000-cpu-battle-of-the-decade/12
https://www.anandtech.com/show/11544/intel-skylake-ep-vs-amd-epyc-7000-cpu-battle-of-the-decade/12
https://www.anandtech.com/show/11544/intel-skylake-ep-vs-amd-epyc-7000-cpu-battle-of-the-decade/12
http://developer.amd.com/amd-aocc/
http://developer.amd.com/amd-aocc/
https://en.wikichip.org/wiki/amd/microarchitectures/zen
https://en.wikichip.org/wiki/amd/microarchitectures/zen
https://software.intel.com/en-us/node/524288
https://software.intel.com/en-us/node/524288
https://software.intel.com/en-us/articles/intelr-memory-latency-checker
https://software.intel.com/en-us/articles/intelr-memory-latency-checker
https://software.intel.com/en-us/articles/intelr-memory-latency-checker
https://software.intel.com/en-us/articles/intel-mkl-link-line-advisor
https://software.intel.com/en-us/articles/intel-mkl-link-line-advisor
http://www.netlib.org/blas/index.html
http://www.netlib.org/blas/index.html
https://www.openblas.net/
https://www.openblas.net/
https://www.gnu.org/software/gsl/
https://www.gnu.org/software/gsl/
https://gcc.gnu.org/wiki/openmp
https://gcc.gnu.org/wiki/openmp
http://www.fftw.org/
http://www.fftw.org/
https://opensbli.github.io
https://opensbli.github.io
https://github.com/hpc-uk/archer-benchmarks/blob/master/apps/OpenSBLI/source/AMD_Naples_build_gcc.md
https://github.com/hpc-uk/archer-benchmarks/blob/master/apps/OpenSBLI/source/AMD_Naples_build_gcc.md
https://github.com/hpc-uk/archer-benchmarks/blob/master/apps/OpenSBLI/source/AMD_Naples_build_gcc.md
https://github.com/hpc-uk/archer-benchmarks/blob/master/apps/OpenSBLI/source/AMD_Naples_build_intel17.md
https://github.com/hpc-uk/archer-benchmarks/blob/master/apps/OpenSBLI/source/AMD_Naples_build_intel17.md
https://github.com/hpc-uk/archer-benchmarks/blob/master/apps/OpenSBLI/source/AMD_Naples_build_intel17.md

Best Practice Guide - AMD EPYC

[24] OpenSBLI job example with TGV512ss, [https://github.com/hpc-uk/archer-benchmarks/bl ob/master/apps/
OpenSBLI/TGV512ss'run/AMD_Naples].

[25] OpenSBLI job example with TGV1024ss, [https://github.convhpc-uk/ar cher-benchmarks/tree/master/apps/
OpenSBLI/TGV1024ss/run/AMD_Naples].

[26] OpenSBLI run results example with TGV512ss, [https://github.com/hpc-uk/ar cher-benchmarks/tree/mas-
ter/apps/OpenSBLI/TGV512ss/results AMD_Naples].

[27] OpenSBLI run results example with TGV1024ss, [https://github.com/hpc-uk/ar cher-benchmarks/tree/mas-
ter/apps/OpenSBLI/TGV1024ss/resultsyAMD_Naples].

[28] CASTEP website, [http://www.castep.org/CASTEP/CASTEP].

[29] CASTEP build instructions with GNU 7.2.0, [https://github.com/hpc-uk/build-instructions/blob/mas-
ter/CASTEP/AMD_Naples 18.1.0 _gcc7_OMPI.md].

[30] CASTEP job example, https:.//github.com/hpc-uk/archer -benchmar ks/bl ob/master/apps/ CASTEP/al 3x3/run/
AMD_Naples/job_castep Al3x3.slurm.

[31] CASTEP run results example with al3x3, [https://github.convhpc-uk/ar cher-benchmarks/tree/master/apps/
CASTEP/al3x3/result AMD_Naples].

[32] GROMACSwebsite, People [http://www.gromacs.org/About_Gromacs/People].
[33] GROMACSwebsite, [http://mww.gromacs.org/About_Gromacs].

[34] GROMACS build instructions with GNU 7.2.0, [https://github.com/hpc-uk/build-instructions/blob/mas-
ter/GROMACSAMD_Naples 2018.2_gcc7.md].

[35] GROMACS job example, https: //github.com/hpc-uk/ar cher-benchmarks/blob/master/apps/
GROMACS 1400k-atoms/run/AMD_Naples/job_gromacs.slurm.

[36] GROMACS run results example with 1400k-atoms, [https://github.convhpc-uk/archer-benchmarks/tree/
master/apps/ GROMACS 1400k-atoms/resultsyAMD_Naples].

Manuals, papers

[37] PRACE Public Deliverable 7.6 Best Practice Guidesfor New and Emerging Architectures, http: //mwww.prace-
ri.eu/IMG/pdf/D7.6_4ip.pdf.

[38] McCalpin, John D., 1995: "Memory Bandwidth and Machine Balance in Current High Performance Com-
puters’, IEEE Computer Society Technical Committee on Computer Architecture (TCCA) Newsletter,
December 1995. http://www.prace-ri.eu/IMG/pdf/D7.6_4ip.pdf.

[39] Portland compilers, documentation. [https://www.pgroup.convresources/docs/18.5/x86/pgi-ref-guide/
index.htm].

[40] LLVM Clang, documentation. [http://developer.amd.com/wordpress/media/2017/04/Clang-the-C-CPP-
Compiler-AOCC-LLVM-1.pdf].

[41] LLVM Flang, documentation. [http://devel oper.amd.com/wor dpress/media/2017/04/DragonEgg-the-For-
tran-compiler-AOCC-LLVM-1.pdf].

[42] Intel intrinsics, [http://kylehegeman.conmvblog/2013/12/27/using-intrinsics] .
[43] AMD libraries, developer site. [http://devel oper.amd.convamd-cpu-libraries].
[44] Perf utility, manual. [https://perf.wiki.kernel.org/index.php/Main_Page].

[45] Perf utility, tutorial. [https://perf.wiki.kernel.org/index.php/Main_Page].

37

https://github.com/hpc-uk/archer-benchmarks/blob/master/apps/OpenSBLI/TGV512ss/run/AMD_Naples
https://github.com/hpc-uk/archer-benchmarks/blob/master/apps/OpenSBLI/TGV512ss/run/AMD_Naples
https://github.com/hpc-uk/archer-benchmarks/blob/master/apps/OpenSBLI/TGV512ss/run/AMD_Naples
https://github.com/hpc-uk/archer-benchmarks/tree/master/apps/OpenSBLI/TGV1024ss/run/AMD_Naples
https://github.com/hpc-uk/archer-benchmarks/tree/master/apps/OpenSBLI/TGV1024ss/run/AMD_Naples
https://github.com/hpc-uk/archer-benchmarks/tree/master/apps/OpenSBLI/TGV1024ss/run/AMD_Naples
https://github.com/hpc-uk/archer-benchmarks/tree/master/apps/OpenSBLI/TGV512ss/results/AMD_Naples
https://github.com/hpc-uk/archer-benchmarks/tree/master/apps/OpenSBLI/TGV512ss/results/AMD_Naples
https://github.com/hpc-uk/archer-benchmarks/tree/master/apps/OpenSBLI/TGV512ss/results/AMD_Naples
https://github.com/hpc-uk/archer-benchmarks/tree/master/apps/OpenSBLI/TGV1024ss/results/AMD_Naples
https://github.com/hpc-uk/archer-benchmarks/tree/master/apps/OpenSBLI/TGV1024ss/results/AMD_Naples
https://github.com/hpc-uk/archer-benchmarks/tree/master/apps/OpenSBLI/TGV1024ss/results/AMD_Naples
http://www.castep.org/CASTEP/CASTEP
http://www.castep.org/CASTEP/CASTEP
https://github.com/hpc-uk/build-instructions/blob/master/CASTEP/AMD_Naples_18.1.0_gcc7_OMPI.md
https://github.com/hpc-uk/build-instructions/blob/master/CASTEP/AMD_Naples_18.1.0_gcc7_OMPI.md
https://github.com/hpc-uk/build-instructions/blob/master/CASTEP/AMD_Naples_18.1.0_gcc7_OMPI.md
https://github.com/hpc-uk/archer-benchmarks/blob/master/apps/CASTEP/al3x3/run/AMD_Naples/job_castep_Al3x3.slurm
https://github.com/hpc-uk/archer-benchmarks/blob/master/apps/CASTEP/al3x3/run/AMD_Naples/job_castep_Al3x3.slurm
https://github.com/hpc-uk/archer-benchmarks/tree/master/apps/CASTEP/al3x3/results/AMD_Naples
https://github.com/hpc-uk/archer-benchmarks/tree/master/apps/CASTEP/al3x3/results/AMD_Naples
https://github.com/hpc-uk/archer-benchmarks/tree/master/apps/CASTEP/al3x3/results/AMD_Naples
http://www.gromacs.org/About_Gromacs/People
http://www.gromacs.org/About_Gromacs/People
http://www.gromacs.org/About_Gromacs
http://www.gromacs.org/About_Gromacs
https://github.com/hpc-uk/build-instructions/blob/master/GROMACS/AMD_Naples_2018.2_gcc7.md
https://github.com/hpc-uk/build-instructions/blob/master/GROMACS/AMD_Naples_2018.2_gcc7.md
https://github.com/hpc-uk/build-instructions/blob/master/GROMACS/AMD_Naples_2018.2_gcc7.md
https://github.com/hpc-uk/archer-benchmarks/blob/master/apps/GROMACS/1400k-atoms/run/AMD_Naples/job_gromacs.slurm
https://github.com/hpc-uk/archer-benchmarks/blob/master/apps/GROMACS/1400k-atoms/run/AMD_Naples/job_gromacs.slurm
https://github.com/hpc-uk/archer-benchmarks/tree/master/apps/GROMACS/1400k-atoms/results/AMD_Naples
https://github.com/hpc-uk/archer-benchmarks/tree/master/apps/GROMACS/1400k-atoms/results/AMD_Naples
https://github.com/hpc-uk/archer-benchmarks/tree/master/apps/GROMACS/1400k-atoms/results/AMD_Naples
http://www.prace-ri.eu/IMG/pdf/D7.6_4ip.pdf
http://www.prace-ri.eu/IMG/pdf/D7.6_4ip.pdf
http://www.prace-ri.eu/IMG/pdf/D7.6_4ip.pdf
https://www.pgroup.com/resources/docs/18.5/x86/pgi-ref-guide/index.htm
https://www.pgroup.com/resources/docs/18.5/x86/pgi-ref-guide/index.htm
https://www.pgroup.com/resources/docs/18.5/x86/pgi-ref-guide/index.htm
http://developer.amd.com/wordpress/media/2017/04/Clang-the-C-CPP-Compiler-AOCC-LLVM-1.pdf
http://developer.amd.com/wordpress/media/2017/04/Clang-the-C-CPP-Compiler-AOCC-LLVM-1.pdf
http://developer.amd.com/wordpress/media/2017/04/Clang-the-C-CPP-Compiler-AOCC-LLVM-1.pdf
http://developer.amd.com/wordpress/media/2017/04/DragonEgg-the-Fortran-compiler-AOCC-LLVM-1.pdf
http://developer.amd.com/wordpress/media/2017/04/DragonEgg-the-Fortran-compiler-AOCC-LLVM-1.pdf
http://developer.amd.com/wordpress/media/2017/04/DragonEgg-the-Fortran-compiler-AOCC-LLVM-1.pdf
http://kylehegeman.com/blog/2013/12/27/using-intrinsics/
http://kylehegeman.com/blog/2013/12/27/using-intrinsics/
http://developer.amd.com/amd-cpu-libraries
http://developer.amd.com/amd-cpu-libraries
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page

Best Practice Guide - AMD EPYC

[46] Savage benchmark. [https://celestrak.com/columns/vO2n04/].

[47] The High Performance Conjugate Gradients (HPCG) Benchmark project is an effort to create a new metric
for ranking HPC systems. The High Performance Conjugate Gradients (HPCG) Benchmark [http://
www.hpcg-benchmark.org].

[48] The High Performance Conjugate Gradients (HPCG) Benchmark top500. The High Performance Conjugate
Gradients top500 list [https://www.top500.or g/hpeg/] .

[49] NPB Benchmark. The HPC NPB benchmark [https://mwww.nas.nasa.gov/publications/npb.html].
[50] AMD pProf AMD pProf [http://devel oper.amd.convamd-%CE%BCprof/] .
[51] GNU OpenMP library [https://gcc.gnu.org/onlinedocs/libgomp/] .

[52] Scheduling control [https: //doc.opensuse.or g/documentati on/l eap/tuni ng/html/book.sl e.tuning/
cha.tuning.taskscheduler.html] .

[53] NUMA kernel parameter tuning [https: //imww.suse.com/documentati on/sled-12/book_sle tuning/da-
ta/sec_tuning_taskscheduler cfs.html].

[54] AMD pProf Manual AMD pProf Manual [http://devel oper.amd.com/wor dpress/media/2013/12/AMDupr of-
User_Guide.pdf] .

[55] Alliena Performance Reports https://www.allinea.com/products/allinea-per formance-reports.
[56] Allinea Dynamic Debugging Tool (DDT) https://mwww.allinea.com/products/ddt .
[57] Rogue Wave Totalview [https://mww.roguewave.conyproducts-services/total view] .

[58] Gnu Debugger, assembly listing flavours. [http://visual gdb.convgdbr eference/commands/set_disassembly-
flavor].

38

https://celestrak.com/columns/v02n04/
https://celestrak.com/columns/v02n04/
http://www.hpcg-benchmark.org
http://www.hpcg-benchmark.org
http://www.hpcg-benchmark.org
https://www.top500.org/hpcg/
https://www.top500.org/hpcg/
https://www.top500.org/hpcg/
https://www.nas.nasa.gov/publications/npb.html
https://www.nas.nasa.gov/publications/npb.html
http://developer.amd.com/amd-%CE%BCprof/
http://developer.amd.com/amd-%CE%BCprof/
https://gcc.gnu.org/onlinedocs/libgomp/
https://gcc.gnu.org/onlinedocs/libgomp/
https://doc.opensuse.org/documentation/leap/tuning/html/book.sle.tuning/cha.tuning.taskscheduler.html
https://doc.opensuse.org/documentation/leap/tuning/html/book.sle.tuning/cha.tuning.taskscheduler.html
https://doc.opensuse.org/documentation/leap/tuning/html/book.sle.tuning/cha.tuning.taskscheduler.html
https://www.suse.com/documentation/sled-12/book_sle_tuning/data/sec_tuning_taskscheduler_cfs.html
https://www.suse.com/documentation/sled-12/book_sle_tuning/data/sec_tuning_taskscheduler_cfs.html
https://www.suse.com/documentation/sled-12/book_sle_tuning/data/sec_tuning_taskscheduler_cfs.html
http://developer.amd.com/wordpress/media/2013/12/AMDuprof-User_Guide.pdf
http://developer.amd.com/wordpress/media/2013/12/AMDuprof-User_Guide.pdf
http://developer.amd.com/wordpress/media/2013/12/AMDuprof-User_Guide.pdf
https://www.allinea.com/products/allinea-performance-reports
https://www.allinea.com/products/ddt
https://www.roguewave.com/products-services/totalview
https://www.roguewave.com/products-services/totalview
http://visualgdb.com/gdbreference/commands/set_disassembly-flavor
http://visualgdb.com/gdbreference/commands/set_disassembly-flavor
http://visualgdb.com/gdbreference/commands/set_disassembly-flavor

	Best Practice Guide - AMD EPYC
	Table of Contents
	1. Introduction
	2. System Architecture / Configuration
	2.1. Processor Architecture
	2.2. Memory Architecture
	2.2.1. Memory Bandwidth Benchmarking

	3. Programming Environment / Basic Porting
	3.1. Available Compilers
	3.1.1. Compiler Flags
	3.1.1.1. Intel
	3.1.1.2. PGI
	3.1.1.3. GNU
	3.1.1.4. AOCC

	3.1.2. Compiler Performance
	3.1.2.1. NPB OpenMP version
	3.1.2.2. High Performance Conjugate Gradients benchmark, OpenMP version

	3.2. Available (Optimized) Numerical Libraries
	3.2.1. Performance of libraries
	3.2.2. Examples of numerical library usage
	3.2.2.1. Intel MKL and FFTW
	3.2.2.2. Short vector math library, libsvml
	3.2.2.2.1. Manual usage of intrinsic functions
	3.2.2.2.2. Automatic usage of Short Math Vector Library

	3.2.2.3. Gnu vector math library

	3.3. Available MPI Implementations
	3.4. OpenMP
	3.4.1. Compiler Flags

	3.5. Basic Porting Examples
	3.5.1. OpenSBLI
	3.5.2. CASTEP
	3.5.3. GROMACS

	4. Performance Analysis
	4.1. Available Performance Analysis Tools
	4.1.1. perf (Linux utility)
	4.1.2. AMD μProf
	4.1.3. Performance reports

	4.2. General Hints for Interpreting Results from all tools

	5. Tuning
	5.1. Advanced / Aggressive Compiler Flags
	5.1.1. GNU compiler
	5.1.2. Intel compiler
	5.1.3. PGI (Portland) compiler
	5.1.4. Compilers and flags

	5.2. Single Core Optimization
	5.2.1. Replace libm library

	5.3. Advanced OpenMP Usage
	5.3.1. Tuning / Environment Variables
	5.3.2. Thread Affinity

	5.4. Memory Optimization
	5.4.1. Memory Affinity (OpenMP/MPI/Hybrid)
	5.4.1.1. Thread placement
	5.4.1.1.1. Numactl
	5.4.1.1.2. Environment variables

	5.4.1.2. Rank placement

	5.4.2. Memory Allocation (malloc) Tuning
	5.4.3. Using Huge Pages
	5.4.4. Monitoring NUMA pages

	5.5. Possible Kernel Parameter Tuning
	5.5.1. NUMA control
	5.5.2. Scheduling control

	6. Debugging
	6.1. Available Debuggers
	6.2. Compiler Flags

	Further documentation

